Näytä suppeat kuvailutiedot

dc.contributor.authorDavid, Guy C.
dc.contributor.authorEriksson-Bique, Sylvester
dc.date.accessioned2024-08-15T09:09:10Z
dc.date.available2024-08-15T09:09:10Z
dc.date.issued2024
dc.identifier.citationDavid, G. C., & Eriksson-Bique, S. (2024). Infinitesimal splitting for spaces with thick curve families and Euclidean embeddings. <i>Annales de l'Institut Fourier</i>, <i>74</i>(3), 973-1016. <a href="https://doi.org/10.5802/aif.3606" target="_blank">https://doi.org/10.5802/aif.3606</a>
dc.identifier.otherCONVID_233322602
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/96601
dc.description.abstractWe study metric measure spaces that admit "thick" families of rectifiable curves or curve fragments, in the form of Alberti representations or curve families of positive modulus. We show that such spaces cannot be bi-Lipschitz embedded into any Euclidean space unless they admit some "infinitesimal splitting": their tangent spaces are bi-Lipschitz equivalent to product spaces of the form Z x R k for some k 1. We also provide applications to conformal dimension and give new proofs of some previously known non-embedding results.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherInstitut Fourier
dc.relation.ispartofseriesAnnales de l'Institut Fourier
dc.rightsCC BY-ND 4.0
dc.subject.otherbi-Lipschitz embedding
dc.subject.othermodulus
dc.subject.otherconformal dimension
dc.subject.otherAlberti representation
dc.titleInfinitesimal splitting for spaces with thick curve families and Euclidean embeddings
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202408155485
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange973-1016
dc.relation.issn0373-0956
dc.relation.numberinseries3
dc.relation.volume74
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 the Authors
dc.rights.accesslevelopenAccessfi
dc.subject.ysodifferentiaaligeometria
dc.subject.ysometriset avaruudet
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p16682
jyx.subject.urihttp://www.yso.fi/onto/yso/p27753
dc.rights.urlhttps://creativecommons.org/licenses/by-nd/4.0/
dc.relation.doi10.5802/aif.3606
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY-ND 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY-ND 4.0