Show simple item record

dc.contributor.authorHirvonen, Henry
dc.contributor.authorEskola, Kari J.
dc.contributor.authorNiemi, Harri
dc.contributor.editorBellwied, R.
dc.contributor.editorGeurts, F.
dc.contributor.editorRapp, R.
dc.contributor.editorRatti, C.
dc.contributor.editorTimmins, A.
dc.contributor.editorVitev, I.
dc.date.accessioned2024-08-07T09:30:40Z
dc.date.available2024-08-07T09:30:40Z
dc.date.issued2024
dc.identifier.citationHirvonen, H., Eskola, K. J., & Niemi, H. (2024). Deep learning for flow observables in high energy heavy-ion collisions. In R. Bellwied, F. Geurts, R. Rapp, C. Ratti, A. Timmins, & I. Vitev (Eds.), <i>30th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (Quark Matter 2023)</i> (Article 02002). EDP Sciences. EPJ Web of Conferences, 296. <a href="https://doi.org/10.1051/epjconf/202429602002" target="_blank">https://doi.org/10.1051/epjconf/202429602002</a>
dc.identifier.otherCONVID_220899754
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/96537
dc.description.abstractWe demonstrate how deep convolutional neural networks can be trained to predict 2+1 D hydrodynamic simulation results for flow coefficients, mean-pT and charged particle multiplicity from the initial energy density profile. We show that this method provides results that are accurate enough, so that one can use neural networks to reliably estimate multi-particle flow correlators. Additionally, we train networks that can take any model parameter as an additional input and demonstrate with a few examples that the accuracy remains good. The usage of neural networks can reduce the computation time needed in performing Bayesian analyses with multi-particle flow correlators by many orders of magnitude.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherEDP Sciences
dc.relation.ispartof30th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (Quark Matter 2023)
dc.relation.ispartofseriesEPJ Web of Conferences
dc.rightsCC BY 4.0
dc.titleDeep learning for flow observables in high energy heavy-ion collisions
dc.typeconferenceObject
dc.identifier.urnURN:NBN:fi:jyu-202408075413
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.relation.isbn978-2-7598-9126-9
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.relation.issn2101-6275
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 the Authors
dc.rights.accesslevelopenAccessfi
dc.relation.conferenceInternational Conference on Ultra-Relativistic Nucleus-Nucleus Collisions
dc.relation.grantnumber330448
dc.relation.grantnumber824093
dc.relation.grantnumber824093
dc.relation.grantnumber835105
dc.relation.grantnumber835105
dc.relation.grantnumber346325
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/824093/EU//STRONG-2020
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/835105/EU//YoctoLHC
dc.subject.ysohiukkasfysiikka
dc.subject.ysosimulointi
dc.subject.ysoneuroverkot
dc.subject.ysosyväoppiminen
dc.subject.ysokoneoppiminen
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p15576
jyx.subject.urihttp://www.yso.fi/onto/yso/p4787
jyx.subject.urihttp://www.yso.fi/onto/yso/p7292
jyx.subject.urihttp://www.yso.fi/onto/yso/p39324
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1051/epjconf/202429602002
dc.relation.funderResearch Council of Finlanden
dc.relation.funderEuropean Commissionen
dc.relation.funderEuropean Commissionen
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderEuroopan komissiofi
dc.relation.funderEuroopan komissiofi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramRIA Research and Innovation Action, H2020en
jyx.fundingprogramERC Advanced Granten
jyx.fundingprogramCentre of Excellence, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramRIA Research and Innovation Action, H2020fi
jyx.fundingprogramERC Advanced Grantfi
jyx.fundingprogramHuippuyksikkörahoitus, SAfi
jyx.fundinginformationWe acknowledge the financial support from the Jenny and Antti Wihuri Foundation, and the Academy of Finland project 330448. This research was funded as a part of the Center of Excellence in Quark Matter of the Academy of Finland (project 346325), the European Research Council project ERC-2018-ADG-835105 YoctoLHC, and the European Union’s Horizon 2020 research and innovation program under grant agreement No 824093 (STRONG-2020). The Finnish IT Center for Science (CSC) is acknowledged for the computing time through the Project jyy2580
dc.type.okmA4


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0