dc.contributor.author | Helske, Jouni | |
dc.contributor.author | Helske, Satu | |
dc.contributor.author | Saqr, Mohammed | |
dc.contributor.author | López-Pernas, Sonsoles | |
dc.contributor.author | Murphy, Keefe | |
dc.contributor.editor | Saqr, Mohammed | |
dc.contributor.editor | López-Pernas,Sonsoles | |
dc.date.accessioned | 2024-07-12T08:32:53Z | |
dc.date.available | 2024-07-12T08:32:53Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Helske, J., Helske, S., Saqr, M., López-Pernas, S., & Murphy, K. (2024). A Modern Approach to Transition Analysis and Process Mining with Markov Models in Education. In M. Saqr, & S. López-Pernas (Eds.), <i>Learning Analytics Methods and Tutorials : A Practical Guide Using R</i> (pp. 381-427). Springer. <a href="https://doi.org/10.1007/978-3-031-54464-4_12" target="_blank">https://doi.org/10.1007/978-3-031-54464-4_12</a> | |
dc.identifier.other | CONVID_221055714 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/96415 | |
dc.description.abstract | This chapter presents an introduction to Markovian modelling for the analysis of sequence data. Contrary to the deterministic approach seen in the previous sequence analysis chapters, Markovian models are probabilistic models, focusing on the transitions between states instead of studying sequences as a whole. The chapter provides an introduction to this method and differentiates between its most common variations: first-order Markov models, hidden Markov models, mixture Markov models, and mixture hidden Markov models. In addition to a thorough explanation and contextualisation within the existing literature, the chapter provides a step-by-step tutorial on how to implement each type of Markovian model using the R package seqHMM. The chapter also provides a complete guide to performing stochastic process mining with Markovian models as well as plotting, comparing and clustering different process models. | en |
dc.format.extent | 736 | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.ispartof | Learning Analytics Methods and Tutorials : A Practical Guide Using R | |
dc.rights | CC BY 4.0 | |
dc.subject.other | Markovin malli | |
dc.title | A Modern Approach to Transition Analysis and Process Mining with Markov Models in Education | |
dc.type | book part | |
dc.identifier.urn | URN:NBN:fi:jyu-202407125241 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.type.uri | http://purl.org/eprint/type/BookItem | |
dc.relation.isbn | 978-3-031-54463-7 | |
dc.type.coar | http://purl.org/coar/resource_type/c_3248 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 381-427 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © The Author(s) 2024 | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | bookPart | |
dc.subject.yso | stokastiset prosessit | |
dc.subject.yso | sekvenssianalyysi | |
dc.subject.yso | prosessilouhinta | |
dc.subject.yso | todennäköisyyslaskenta | |
dc.subject.yso | mallintaminen | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p11400 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p23429 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p39672 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p4746 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3533 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1007/978-3-031-54464-4_12 | |
dc.type.okm | A3 | |