Folders: 15 Files: 115
Bytes: 4927749
README.md
README.md
featurize_md_traj_big_additions_srun_serial.py
featurize_single_pdb_cluster.py
featurize_single_pdb_protein.py
ghecom_pocket.py
graph_propagation_big_additions.py
graph_propagation_single_pdb.py
molgraphs_2.py
pair_ligands_alphas_big.py
pair_ligands_alphas_big_additions.py
pdb_modification.py
preproc.py
wasserstein.py
weisfeiler_lehman.py
cluster_global_features.py
cluster_global_features.py~
featurize_ligands.py
featurize_ligands.py~
pmba_geometric.py
pmba_geometric.py~
cluster_global_features.cpython-311.pyc
cluster_global_features.cpython-36.pyc
featurize_ligands.cpython-311.pyc
featurize_ligands.cpython-36.pyc
pmba_geometric.cpython-311.pyc
pmba_geometric.cpython-36.pyc
alpha_carbons.py
chirality_2.py
fractal.py
gnm_modes.py
opd_chirality.cpp
opd_chirality.cpp~
opd_chirality_cpp.so
ricci.py
secondary_structure.py
secondary_structure.py~
tabulated_protein_features.py
tabulated_protein_features.py~
alpha_carbons.cpython-311.pyc
alpha_carbons.cpython-36.pyc
chirality_2.cpython-311.pyc
chirality_2.cpython-36.pyc
fractal.cpython-311.pyc
fractal.cpython-36.pyc
gnm_modes.cpython-311.pyc
gnm_modes.cpython-36.pyc
ricci.cpython-311.pyc
ricci.cpython-36.pyc
secondary_structure.cpython-311.pyc
secondary_structure.cpython-36.pyc
tabulated_protein_features.cpython-311.pyc
tabulated_protein_features.cpython-36.pyc
README.md
all_pairs_prediction_single_pdb_additions_V2.py
make_CV_sets_additions.py
nn_loss_functions.py
prepare_data_additions.py
preproc.py
test_NN_predictions_additions.py
train_CV_NNs_cpu_fixed_data_small_models_additions.py
training_losses_cutoff-1000_WL-2_CV-0.npz
training_losses_cutoff-1000_WL-2_CV-1.npz
training_losses_cutoff-1000_WL-2_CV-2.npz
training_losses_cutoff-1000_WL-2_CV-3.npz
training_losses_cutoff-1000_WL-2_CV-4.npz
CV-1of5_checkpoint-0150.ckpt.data-00000-of-00001
CV-1of5_checkpoint-0150.ckpt.index
CV-2of5_checkpoint-0150.ckpt.data-00000-of-00001
CV-2of5_checkpoint-0150.ckpt.index
CV-3of5_checkpoint-0150.ckpt.data-00000-of-00001
CV-3of5_checkpoint-0150.ckpt.index
CV-4of5_checkpoint-0150.ckpt.data-00000-of-00001
CV-4of5_checkpoint-0150.ckpt.index
CV-5of5_checkpoint-0150.ckpt.data-00000-of-00001
CV-5of5_checkpoint-0150.ckpt.index
checkpoint
README.md
anneal_cluster_protein_mpi_pdb_additions_capsule.py
anneal_cluster_protein_mpi_pdb_additions_sphere.py
capsule_directions.py
mc_annealing.py
mc_annealing_free.py
pairing_loss_1.py
spherical_directions.py
starting_structures.py
README.md
clustering_search_mc_prepare.py
pairing_loss_1.py
pmba_geometric.py
position_fine_tuning_1.py
svd_fitting.py
README.md
anneal_cluster_protein_mpi_pdb_finetuning.py
anneal_cluster_protein_mpi_pdb_finetuning_free.py
creating_tuned_pdbs.py
finetuning_loss.py
mc_annealing.py
mc_annealing_free.py
pdb_labels_1.py
pdb_mda_help.py
pdb_modification.py
pmba_geometric.py
structure_prep_tuning.py
svd_fitting.py
Au102pMBA44_fully-deprot_500ns.pdb
Au25pMBA18_P1_AuNC.pdb
Au25pMBSA18_P1_AuNC.pdb
Au25pMBSA18_P2_AuNC.pdb
ApoE_1le2_last_frame_1us.pdb
Fib_3ghg_last_frame_1us.pdb
HSA_1n5u_last_frame_1us.pdb
IgE_7mlh_last_frame_1us.pdb
IgG1_1hzh_last_frame_1us.pdb
example_project_README.md

GraphBNC source code

Abstract
GraphBNC is a framework that combines graph theory based methods, machine learning and other computational tools for placing protected gold nanoclusters on blood proteins. Machine learning part, artificial neural networks (ANNs) in this case, estimates interactions between the ligand molecules of the nanocluster and amino acid residues, which are used to find favorable site for the nanocluster on the protein. This dataset contains basic source codes needed to run the method. The first part contains methods to encode the nanoclusters and the proteins. The second part has the codes to train and to test ANNs, but pretrained weights are also provided. The rest focuses on the placement of the cluster utilizing Monte Carlo -based simulated annealing. This is a snapshot of the code dataset that has been taken on 05.07.2024. A more detailed description of the data and the address to the GitLab repository for the latest version of the code can be found from the parent dataset of this data publication. The dataset is published under a GNU Affero General Public License 3.
Main Authors
Format
Dataset
Published
2024
Subjects
Publication in research information system
Publisher
University of Jyväskylä
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-202407055139Use this for linking
DOI
https://doi.org/10.17011/jyx/dataset/96312
Language
English
Is part of publication
Pihlajamäki, Antti; Malola, Sami; Matus Cortés, Maria; Häkkinen, Hannu. GraphBNC source code (parent repository). V. 19.6.2024. University of Jyväskylä. https://gitlab.jyu.fi/graphbnc-project-group/graphbnc. https://doi.org/10.17011/jyx/dataset/96311
Citation
  • Pihlajamäki, Antti; Malola, Sami; Matus Cortés, Maria; Häkkinen, Hannu. GraphBNC source code. V. 19.6.2024. University of Jyväskylä. 10.17011/jyx/dataset/96312
Funder(s)
Research Council of Finland
Suomen Akatemia
Funding program(s)
Others, AoF
Muut, SA
Research Council of Finland
CopyrightPihlajamäki, Antti and University of Jyväskylä

Share