Show simple item record

dc.contributor.authorHämäläinen, Raija
dc.contributor.authorDe Wever, Bram
dc.contributor.authorSipiläinen, Katriina
dc.contributor.authorHeilala, Ville
dc.contributor.authorHelovuo, Arto
dc.contributor.authorLehesvuori, Sami
dc.contributor.authorJärvinen, Miitta
dc.contributor.authorHelske, Jouni
dc.contributor.authorKärkkäinen, Tommi
dc.date.accessioned2024-06-20T10:17:06Z
dc.date.available2024-06-20T10:17:06Z
dc.date.issued2024
dc.identifier.citationHämäläinen, R., De Wever, B., Sipiläinen, K., Heilala, V., Helovuo, A., Lehesvuori, S., Järvinen, M., Helske, J., & Kärkkäinen, T. (2024). Using eye tracking to support professional learning in vision-intensive professions : a case of aviation pilots. <i>Education and Information Technologies</i>, <i>Early online</i>. <a href="https://doi.org/10.1007/s10639-024-12814-9" target="_blank">https://doi.org/10.1007/s10639-024-12814-9</a>
dc.identifier.otherCONVID_220716393
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/96074
dc.description.abstractIn an authentic flight simulator, the instructor is traditionally located behind the learner and is thus unable to observe the pilot’s visual attention (i.e. gaze behaviour). The focus of this article is visual attention in relation to pilots’ professional learning in an Airbus A320 Full Flight Simulator. For this purpose, we measured and analysed pilots’ visual scanning behaviour during flight simulation-based training. Eye-tracking data were collected from the participants (N = 15 pilots in training) to objectively and non-intrusively study their visual attention behaviour. First, we derived and compared the visual scanning patterns. The descriptive statistics revealed the pilots’ visual scanning paths and whether they followed the expected flight protocol. Second, we developed a procedure to automate the analysis. Specifically, a Hidden Markov model (HMM) was used to automatically capture the actual phases of pilots’ visual scanning. The advantage of this technique is that it is not bound to manual assessment based on graphs or descriptive data. In addition, different scanning patterns can be revealed in authentic learning situations where gaze behaviour is not known in advance. Our results illustrate that HMM can provide a complementary approach to descriptive statistics. Implications for future research are discussed, including how artificial intelligence in education could benefit from the HMM approach.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofseriesEducation and Information Technologies
dc.rightsCC BY 4.0
dc.subject.otheradult learning
dc.subject.othersimulations
dc.subject.otherapplications in subject areas
dc.subject.othereye tracking
dc.subject.otherhidden Markov model
dc.titleUsing eye tracking to support professional learning in vision-intensive professions : a case of aviation pilots
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202406204911
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosKasvatustieteiden laitosfi
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosMonikielisen akateemisen viestinnän keskusfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.laitosDepartment of Educationen
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.laitosCentre for Multilingual Academic Communicationen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1360-2357
dc.relation.volumeEarly online
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 the Authors
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber331817
dc.relation.grantnumber353325
dc.subject.ysosimulaattorit
dc.subject.ysokatseenseuranta
dc.subject.ysolentäjät
dc.subject.ysosimulaatioharjoittelu
dc.subject.ysomallintaminen
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p4786
jyx.subject.urihttp://www.yso.fi/onto/yso/p37956
jyx.subject.urihttp://www.yso.fi/onto/yso/p15638
jyx.subject.urihttp://www.yso.fi/onto/yso/p31591
jyx.subject.urihttp://www.yso.fi/onto/yso/p3533
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1007/s10639-024-12814-9
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramResearch profiles, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramProfilointi, SAfi
jyx.fundinginformationThe work was supported by the Academy of Finland under Grant numbers 353325 and 331817. Open Access funding provided by University of Jyväskylä (JYU).
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0