dc.contributor.author | Julin, Vesa | |
dc.contributor.author | La Manna Domenico, Angelo | |
dc.date.accessioned | 2024-06-14T12:37:08Z | |
dc.date.available | 2024-06-14T12:37:08Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Julin, V., & La Manna Domenico, A. (2024). A Priori Estimates for the Motion of Charged Liquid Drop : A Dynamic Approach via Free Boundary Euler Equations. <i>Journal of Mathematical Fluid Mechanics</i>, <i>26</i>(3), Article 48. <a href="https://doi.org/10.1007/s00021-024-00883-2" target="_blank">https://doi.org/10.1007/s00021-024-00883-2</a> | |
dc.identifier.other | CONVID_220430003 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/95920 | |
dc.description.abstract | We study the motion of charged liquid drop in three dimensions where the equations of motions are given by
the Euler equations with free boundary with an electric field. This is a well-known problem in physics going back to the famous work by Rayleigh. Due to experiments and numerical simulations one may expect the charged drop to form conicalsingularities called Taylor cones, which we interpret as singularities of the flow. In this paper, we study the well-posednessof the problem and regularity of the solution. Our main theorem is a criterion which roughly states that if the flow remains C1,α-regular in shape and the velocity remains Lipschitz-continuous, then the flow remains smooth, i.e., C∞ in time and space, assuming that the initial data is smooth. Our main focus is on the regularity of the shape of the drop. Indeed, due to the appearance of Taylor cones, which are singularities with Lipschitz-regularity, we expect the C1,α-regularity assumption to be optimal. We also quantify the C∞-regularity via high order energy estimates which, in particular, impliesthe well-posedness of the problem. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.ispartofseries | Journal of Mathematical Fluid Mechanics | |
dc.rights | CC BY 4.0 | |
dc.subject.other | fluid mechanics | |
dc.subject.other | euler equations | |
dc.subject.other | regularity theory for incompressible fluids | |
dc.subject.other | free boundary | |
dc.subject.other | non-local isoperimetric problem | |
dc.subject.other | rayleigh threshold | |
dc.title | A Priori Estimates for the Motion of Charged Liquid Drop : A Dynamic Approach via Free Boundary Euler Equations | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202406144686 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 1422-6928 | |
dc.relation.numberinseries | 3 | |
dc.relation.volume | 26 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2024 the Authors | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | 314227 | |
dc.subject.yso | osittaisdifferentiaaliyhtälöt | |
dc.subject.yso | pisarat | |
dc.subject.yso | nesteet | |
dc.subject.yso | hydromekaniikka | |
dc.subject.yso | sähkökentät | |
dc.subject.yso | hydrodynamiikka | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p12392 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p25362 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p4336 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p12554 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p8138 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p10546 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1007/s00021-024-00883-2 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Research costs of Academy Research Fellow, AoF | en |
jyx.fundingprogram | Akatemiatutkijan tutkimuskulut, SA | fi |
jyx.fundinginformation | Open Access funding provided by University of Jyväskylä (JYU). The research was supported by the Academy of Finland grant 314227. | |
dc.type.okm | A1 | |