Näytä suppeat kuvailutiedot

dc.contributor.authorLonati, Sirio
dc.contributor.authorRönkkö, Mikko
dc.contributor.authorAntonakis, John
dc.date.accessioned2024-05-29T12:14:14Z
dc.date.available2024-05-29T12:14:14Z
dc.date.issued2024
dc.identifier.citationLonati, S., Rönkkö, M., & Antonakis, J. (2024). Normality assumption in latent interaction models. <i>Psychological Methods</i>, <i>Early online</i>. <a href="https://doi.org/10.1037/met0000657" target="_blank">https://doi.org/10.1037/met0000657</a>
dc.identifier.otherCONVID_213528581
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/95334
dc.description.abstractLatent moderated structural equation (LMS) is one of the most common techniques for estimating interaction effects involving latent variables (i.e., XWITH command in Mplus). However, empirical applications of LMS often overlook that this estimation technique assumes normally distributed variables and that violations of this assumption may lead to seriously biased parameter estimates. Against this backdrop, we study the robustness of LMS to different shapes and sources of nonnormality and examine whether various statistical tests can help researchers detect such distributional misspecifications. In four simulations, we show that LMS can be severely biased when the latent predictors or the structural disturbances are nonnormal. On the contrary, LMS is unaffected by nonnormality originating from measurement errors. As a result, testing for the multivariate normality of observed indicators of the latent predictors can lead to erroneous conclusions, flagging distributional misspecifications in perfectly unbiased LMS results and failing to reject seriously biased results. To solve this issue, we introduce a novel Hausman-type specification test to assess the distributional assumptions of LMS and demonstrate its performance.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Psychological Association (APA)
dc.relation.ispartofseriesPsychological Methods
dc.rightsIn Copyright
dc.titleNormality assumption in latent interaction models
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202405294097
dc.contributor.laitosKauppakorkeakoulufi
dc.contributor.laitosSchool of Business and Economicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1082-989X
dc.relation.volumeEarly online
dc.type.versionacceptedVersion
dc.rights.copyright© 2024 American Psychological Association
dc.rights.accesslevelopenAccessfi
dc.subject.ysotilastolliset mallit
dc.subject.ysonormaalijakauma
dc.subject.ysomonimuuttujamenetelmät
dc.subject.ysorakenneyhtälömallit
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p26278
jyx.subject.urihttp://www.yso.fi/onto/yso/p9478
jyx.subject.urihttp://www.yso.fi/onto/yso/p2131
jyx.subject.urihttp://www.yso.fi/onto/yso/p28201
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1037/met0000657
jyx.fundinginformationSNSF_/Swiss National Science Foundation/Switzerland
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright