Normality assumption in latent interaction models
Lonati, S., Rönkkö, M., & Antonakis, J. (2024). Normality assumption in latent interaction models. Psychological Methods, Early online. https://doi.org/10.1037/met0000657
Julkaistu sarjassa
Psychological MethodsPäivämäärä
2024Tekijänoikeudet
© 2024 American Psychological Association
Latent moderated structural equation (LMS) is one of the most common techniques for estimating interaction effects involving latent variables (i.e., XWITH command in Mplus). However, empirical applications of LMS often overlook that this estimation technique assumes normally distributed variables and that violations of this assumption may lead to seriously biased parameter estimates. Against this backdrop, we study the robustness of LMS to different shapes and sources of nonnormality and examine whether various statistical tests can help researchers detect such distributional misspecifications. In four simulations, we show that LMS can be severely biased when the latent predictors or the structural disturbances are nonnormal. On the contrary, LMS is unaffected by nonnormality originating from measurement errors. As a result, testing for the multivariate normality of observed indicators of the latent predictors can lead to erroneous conclusions, flagging distributional misspecifications in perfectly unbiased LMS results and failing to reject seriously biased results. To solve this issue, we introduce a novel Hausman-type specification test to assess the distributional assumptions of LMS and demonstrate its performance.
...
Julkaisija
American Psychological Association (APA)ISSN Hae Julkaisufoorumista
1082-989XJulkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/213528581
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Kauppakorkeakoulu [1368]
Lisätietoja rahoituksesta
SNSF_/Swiss National Science Foundation/SwitzerlandLisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
gllvm : Fast analysis of multivariate abundance data with generalized linear latent variable models in R
Niku, Jenni; Hui, Francis K.C.; Taskinen, Sara; Warton, David I. (Wiley, 2019)1.There has been rapid development in tools for multivariate analysis based on fully specified statistical models or “joint models”. One approach attracting a lot of attention is generalized linear latent variable models ... -
Modelling phytoplankton in boreal lakes
Pätynen, Anita (University of Jyväskylä, 2014) -
Extracting conditionally heteroskedastic components using independent component analysis
Miettinen, Jari; Matilainen, Markus; Nordhausen, Klaus; Taskinen, Sara (Wiley-Blackwell, 2020)In the independent component model, the multivariate data are assumed to be a mixture of mutually independent latent components. The independent component analysis (ICA) then aims at estimating these latent components. In ... -
Structural Parameters under Partial Least Squares and Covariance-Based Structural Equation Modeling : A Comment on Yuan and Deng (2021)
Schuberth, Florian; Rosseel, Yves; Rönkkö, Mikko; Trinchera, Laura; Kline, Rex B.; Henseler, Jörg (Routledge, 2023)In their article, Yuan and Deng argue that a structural parameter under partial least squares structural equation modeling (PLS-SEM) is zero if and only if the same structural parameter is zero under covariance-based ... -
Analyzing environmental‐trait interactions in ecological communities with fourth‐corner latent variable models
Niku, Jenni; Hui, Francis K. C.; Taskinen, Sara; Warton, David I. (John Wiley & Sons, 2021)In ecological community studies it is often of interest to study the effect of species related trait variables on abundances or presence-absences. Specifically, the interest may lay in the interactions between environmental ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.