Assessing the effectiveness of spatial PCA on SVM-based decoding of EEG data
Abstract
Principal component analysis (PCA) has been widely employed for dimensionality reduction prior to multivariate pattern classification (decoding) in EEG research. The goal of the present study was to provide an evaluation of the effectiveness of PCA on decoding accuracy (using support vector machines) across a broad range of experimental paradigms. We evaluated several different PCA variations, including group-based and subject-based component decomposition and the application of Varimax rotation or no rotation. We also varied the numbers of PCs that were retained for the decoding analysis. We evaluated the resulting decoding accuracy for seven common event-related potential components (N170, mismatch negativity, N2pc, P3b, N400, lateralized readiness potential, and error-related negativity). We also examined more challenging decoding tasks, including decoding of face identity, facial expression, stimulus location, and stimulus orientation. The datasets also varied in the number and density of electrode sites. Our findings indicated that none of the PCA approaches consistently improved decoding performance related to no PCA, and the application of PCA frequently reduced decoding performance. Researchers should therefore be cautious about using PCA prior to decoding EEG data from similar experimental paradigms, populations, and recording setups.
Main Authors
Format
Articles
Research article
Published
2024
Series
Subjects
Publication in research information system
Publisher
Elsevier
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-202405153617Käytä tätä linkitykseen.
Review status
Peer reviewed
ISSN
1053-8119
DOI
https://doi.org/10.1016/j.neuroimage.2024.120625
Language
English
Published in
Neuroimage
Citation
- Zhang, G., Carrasco, C. D., Winsler, K., Bahle, B., Cong, F., & Luck, S. J. (2024). Assessing the effectiveness of spatial PCA on SVM-based decoding of EEG data. Neuroimage, 293, Article 120625. https://doi.org/10.1016/j.neuroimage.2024.120625
Additional information about funding
This study was made possible by grants R01MH087450 and R01 EY033329 from the National Institutes of Health to SJL, USA .
Copyright© 2024 The Author(s). Published by Elsevier Inc