Substituent effects on exchange anisotropy in single- and multiorbital organic radical magnets
Abstract
The contribution of heavy-atom substituents to the overall spin-orbit interaction in two classes of organic radical molecular magnets is discussed. In “single-orbital” radicals, spin-orbit coupling (SOC) effects are well described with reference to pairwise anisotropic exchange interactions between singly occupied spin-bearing orbitals on neighboring molecules; anisotropy requires the presence of spin density on heavy-atom sites with principal quantum number n > 3. In “multiorbital” radicals, SOC involving virtual orbitals also contributes to anisotropic exchange and, as a result, the presence of heavy (n > 3) atoms in formally non-spin-bearing sites can enhance pseudodipolar ferromagnetic interaction terms. To demonstrate these effects, ferromagnetic and antiferromagnetic resonance spectroscopies have been used to probe the exchange anisotropy in two organic magnets, one a “single-orbital” ferromagnet, the other a “multiorbital” spin-canted antiferromagnet, both of which contain a heavy-atom iodine (n = 5) substituent. While the symmetry of the singly occupied molecular orbital in both radicals precludes spin-orbit contributions from iodine to the overall exchange anisotropy, the symmetry and energetically low-lying nature of the lowest unoccupied molecular orbital in the latter allows for appreciable spin density at the site of iodine substitution and, hence, a large exchange anisotropy.
Main Authors
Format
Articles
Research article
Published
2024
Series
Subjects
Publication in research information system
Publisher
American Physical Society (APS)
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-202405153611Käytä tätä linkitykseen.
Review status
Peer reviewed
ISSN
2476-0455
DOI
https://doi.org/10.1103/PhysRevMaterials.8.044406
Language
English
Published in
Physical Review Materials
Citation
- Marbey, J., Mailman, A., Oakley, R., Hill, S., & Winter, S. (2024). Substituent effects on exchange anisotropy in single- and multiorbital organic radical magnets. Physical Review Materials, 8(4), Article 044406. https://doi.org/10.1103/PhysRevMaterials.8.044406
Additional information about funding
This work was supported by the Office of Naval Research – Global (Grant No. N62909-23-1-2079) and the Natural Sciences and Engineering Council of Canada. Work performed at the NHMFL is supported the NSF (Grants No. DMR-1644779 and No. DMR-2128556) and the State of Florida
Copyright©2024 American Physical Society