Determining effects of doping lithium nickel oxide with tungsten using Compton scattering

Abstract
X-ray Compton scattering experiments along with parallel first-principles computations were carried out on LiNiO2 to understand the effects of W doping on this cathode material for Li-ion batteries. By employing high-energy x rays exceeding 100 keV, an insight is gained into the fate of the W valence electrons, which are adduced to undergo transfer to empty O 2p energy bands within the active oxide matrix of the cathode. The substitution of W for Ni is shown to increase the electronic conductivity and to enhance the total magnetization per Ni atom. Our study demonstrates that an analysis of line shapes of Compton scattered x rays in combination with theoretical modeling can provide a precise method for an atomic level understanding of the nature of the doping process.
Language
English
Published in
APL Energy
Citation
  • Kothalawala, V. N., Suzuki, K., Li, X., Barbiellini, B., Nokelainen, J., Makkonen, I., Ferragut, R., Tynjälä, P., Laine, P., Välikangas, J., Hu, T., Lassi, U., Takano, K., Tsuji, N., Amada, Y., Sasikala, D. A. A., Alatalo, M., Sakurai, Y., Sakurai, H., . . . Bansil, A. (2024). Determining effects of doping lithium nickel oxide with tungsten using Compton scattering. APL Energy, 2(2), Article 026102. https://doi.org/10.1063/5.0193527
License
CC BY 4.0Open Access
Copyright© 2024 the Authors

Share