Screen-Printed Composite LiFePO4-LLZO Cathodes Towards Solid-State Li-ion Batteries

Abstract
LiFePO4 (LFP) is widely used as cathode material for its low cost, high safety, and good thermal properties. It is one of the most exploited cathode materials for commercial Li-ion batteries (LIBs). Herein, we present a screen-printing method to prepare a LFP composite cathode, and a rational combination of the typical composite solid electrolytes (CSE) consisting of polyethylene oxide (PEO)/Li-salt (LiTFSi) electrolyte with ceramic filler (LLZO or Li6.4La3Zr1.4Ta0.6O12 (LLZTO)) has been successfully demonstrated for SSB. The prepared CSE offers: i) a promising ionic conductivity (0.425 mS cm−1 at 60 °C), ii) a wide electrochemical window (>4.6 V), iii) a high Li-ion transference number (tLi+=0.44), iv) a good interfacial compatibility with the electrode, v) a good thermal stability, and vi) a high chemical stability toward Li metal anode. The Li/CSE/Li symmetric cells can be cycled for more than 1000 h without Li-dendrites growth at a current density of 0.2 mA cm−2. The final cell screen-printed LFP composite cathode (LFP+LLZO)//Li metal displays a high reversible specific capacity of 140 mAh g−1 (0.1 C) and 50 mAh g−1 (0.5 C) after 1st and 500th cycles.
Main Authors
Format
Articles Research article
Published
2024
Series
Subjects
Publication in research information system
Publisher
Wiley-VCH Verlag
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-202403222570Use this for linking
Review status
Peer reviewed
ISSN
2196-0216
DOI
https://doi.org/10.1002/celc.202400051
Language
English
Published in
ChemElectroChem
Citation
  • Molaiyan, P., Välikangas, J., Sliz, R., Ramteke, D.D., Hu, T., Paolella, A., Fabritius, T., & Lassi, U. (2024). Screen-Printed Composite LiFePO4-LLZO Cathodes Towards Solid-State Li-ion Batteries. ChemElectroChem, Early View. https://doi.org/10.1002/celc.202400051
License
CC BY 4.0Open Access
Additional information about funding
This work was supported and funded by EU/EURF (PASS, A76178) and EU/Interreg Nord (SolBat, grant no. 20202885) projects. D.D.R thanks to Academy of Finland – Academy Project (CEMGLASS-243033041) for financial support.
Copyright© 2024 the Authors

Share