Nonlinear blind source separation exploiting spatial nonstationarity
Abstract
In spatial blind source separation the observed multivariate random fields are assumed to be mixtures of latent spatially dependent random fields. The objective is to recover latent random fields by estimating the unmixing transformation. Currently, the algorithms for spatial blind source separation can only estimate linear unmixing transformations. Nonlinear blind source separation methods for spatial data are scarce. In this paper, we extend an identifiable variational autoencoder that can estimate nonlinear unmixing transformations to spatially dependent data, and demonstrate its performance for both stationary and nonstationary spatial data using simulations. In addition, we introduce scaled mean absolute Shapley additive explanations for interpreting the latent components through nonlinear mixing transformation. The spatial identifiable variational autoencoder is applied to a geochemical dataset to find the latent random fields, which are then interpreted by using the scaled mean absolute Shapley additive explanations. Finally, we illustrate how the proposed method can be used as a pre-processing method when making multivariate predictions.
Main Authors
Format
Articles
Research article
Published
2024
Series
Subjects
Publication in research information system
Publisher
Elsevier
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-202403062286Use this for linking
Review status
Peer reviewed
ISSN
0020-0255
DOI
https://doi.org/10.1016/j.ins.2024.120365
Language
English
Published in
Information Sciences
Citation
- Sipilä, M., Nordhausen, K., & Taskinen, S. (2024). Nonlinear blind source separation exploiting spatial nonstationarity. Information Sciences, 665, Article 120365. https://doi.org/10.1016/j.ins.2024.120365
Additional information about funding
This work was partly supported by the Austrian Science Fund (P31881-N32), the Research Council of Finland (453691), the HiTEc COST Action (CA21163), the Vilho, Yrjö and Kalle Väisälä Foundation, and the Kone foundation (201903741).
Copyright© 2024 the Authors