Näytä suppeat kuvailutiedot

dc.contributor.authorSipilä, Mika
dc.contributor.authorNordhausen, Klaus
dc.contributor.authorTaskinen, Sara
dc.date.accessioned2024-03-06T08:42:15Z
dc.date.available2024-03-06T08:42:15Z
dc.date.issued2024
dc.identifier.citationSipilä, M., Nordhausen, K., & Taskinen, S. (2024). Nonlinear blind source separation exploiting spatial nonstationarity. <i>Information Sciences</i>, <i>665</i>, Article 120365. <a href="https://doi.org/10.1016/j.ins.2024.120365" target="_blank">https://doi.org/10.1016/j.ins.2024.120365</a>
dc.identifier.otherCONVID_207421603
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/93820
dc.description.abstractIn spatial blind source separation the observed multivariate random fields are assumed to be mixtures of latent spatially dependent random fields. The objective is to recover latent random fields by estimating the unmixing transformation. Currently, the algorithms for spatial blind source separation can only estimate linear unmixing transformations. Nonlinear blind source separation methods for spatial data are scarce. In this paper, we extend an identifiable variational autoencoder that can estimate nonlinear unmixing transformations to spatially dependent data, and demonstrate its performance for both stationary and nonstationary spatial data using simulations. In addition, we introduce scaled mean absolute Shapley additive explanations for interpreting the latent components through nonlinear mixing transformation. The spatial identifiable variational autoencoder is applied to a geochemical dataset to find the latent random fields, which are then interpreted by using the scaled mean absolute Shapley additive explanations. Finally, we illustrate how the proposed method can be used as a pre-processing method when making multivariate predictions.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesInformation Sciences
dc.rightsCC BY 4.0
dc.subject.otherindependent component analysis
dc.subject.othermultivariate spatial data
dc.subject.otherShapley values
dc.subject.othervariational autoencoder
dc.titleNonlinear blind source separation exploiting spatial nonstationarity
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202403062286
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineResurssiviisausyhteisöfi
dc.contributor.oppiaineTilastotiedefi
dc.contributor.oppiaineSchool of Resource Wisdomen
dc.contributor.oppiaineStatisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0020-0255
dc.relation.volume665
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 the Authors
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysoriippumattomien komponenttien analyysi
dc.subject.ysosignaalinkäsittely
dc.subject.ysopaikkatietoanalyysi
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p38529
jyx.subject.urihttp://www.yso.fi/onto/yso/p12266
jyx.subject.urihttp://www.yso.fi/onto/yso/p28516
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1016/j.ins.2024.120365
jyx.fundinginformationThis work was partly supported by the Austrian Science Fund (P31881-N32), the Research Council of Finland (453691), the HiTEc COST Action (CA21163), the Vilho, Yrjö and Kalle Väisälä Foundation, and the Kone foundation (201903741).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0