dc.contributor.author | Sipilä, Mika | |
dc.contributor.author | Nordhausen, Klaus | |
dc.contributor.author | Taskinen, Sara | |
dc.date.accessioned | 2024-03-06T08:42:15Z | |
dc.date.available | 2024-03-06T08:42:15Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Sipilä, M., Nordhausen, K., & Taskinen, S. (2024). Nonlinear blind source separation exploiting spatial nonstationarity. <i>Information Sciences</i>, <i>665</i>, Article 120365. <a href="https://doi.org/10.1016/j.ins.2024.120365" target="_blank">https://doi.org/10.1016/j.ins.2024.120365</a> | |
dc.identifier.other | CONVID_207421603 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/93820 | |
dc.description.abstract | In spatial blind source separation the observed multivariate random fields are assumed to be mixtures of latent spatially dependent random fields. The objective is to recover latent random fields by estimating the unmixing transformation. Currently, the algorithms for spatial blind source separation can only estimate linear unmixing transformations. Nonlinear blind source separation methods for spatial data are scarce. In this paper, we extend an identifiable variational autoencoder that can estimate nonlinear unmixing transformations to spatially dependent data, and demonstrate its performance for both stationary and nonstationary spatial data using simulations. In addition, we introduce scaled mean absolute Shapley additive explanations for interpreting the latent components through nonlinear mixing transformation. The spatial identifiable variational autoencoder is applied to a geochemical dataset to find the latent random fields, which are then interpreted by using the scaled mean absolute Shapley additive explanations. Finally, we illustrate how the proposed method can be used as a pre-processing method when making multivariate predictions. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Elsevier | |
dc.relation.ispartofseries | Information Sciences | |
dc.rights | CC BY 4.0 | |
dc.subject.other | independent component analysis | |
dc.subject.other | multivariate spatial data | |
dc.subject.other | Shapley values | |
dc.subject.other | variational autoencoder | |
dc.title | Nonlinear blind source separation exploiting spatial nonstationarity | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202403062286 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Resurssiviisausyhteisö | fi |
dc.contributor.oppiaine | Tilastotiede | fi |
dc.contributor.oppiaine | School of Resource Wisdom | en |
dc.contributor.oppiaine | Statistics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 0020-0255 | |
dc.relation.volume | 665 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2024 the Authors | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.subject.yso | riippumattomien komponenttien analyysi | |
dc.subject.yso | signaalinkäsittely | |
dc.subject.yso | paikkatietoanalyysi | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p38529 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p12266 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p28516 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1016/j.ins.2024.120365 | |
jyx.fundinginformation | This work was partly supported by the Austrian Science Fund (P31881-N32), the Research Council of Finland (453691), the HiTEc COST Action (CA21163), the Vilho, Yrjö and Kalle Väisälä Foundation, and the Kone foundation (201903741). | |
dc.type.okm | A1 | |