Näytä suppeat kuvailutiedot

dc.contributor.authorOrponen, Tuomas
dc.contributor.authorShmerkin, Pablo
dc.date.accessioned2024-03-05T10:36:35Z
dc.date.available2024-03-05T10:36:35Z
dc.date.issued2023
dc.identifier.citationOrponen, T., & Shmerkin, P. (2023). On the Hausdorff dimension of Furstenberg sets and orthogonal projections in the plane. <i>Duke Mathematical Journal</i>, <i>172</i>(18), 3559-3632. <a href="https://doi.org/10.1215/00127094-2022-0103" target="_blank">https://doi.org/10.1215/00127094-2022-0103</a>
dc.identifier.otherCONVID_207392649
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/93807
dc.description.abstractLet 0 s 1 and 0 t 2. An .s;t/-Furstenberg set is a set K R2 with the following property: there exists a line set L of Hausdorff dimension dimH L t such that dimH.K \ `/ s for all ` 2 L. We prove that for s 2 .0;1/ and t 2 .s;2, the Hausdorff dimension of .s;t/-Furstenberg sets in R2 is no smaller than 2s C , where >0 depends only on s and t. For s > 1=2 and t D 1, this is an -improvement over a result of Wolff from 1999. The same method also yields an -improvement to Kaufman’s projection theorem from 1968. We show that if s 2 .0;1/, t 2 .s;2, and K R2 is an analytic set with dimH K D t, then dimH ® e 2 S1 W dimH e.K/ s ¯ s ; where >0 depends only on s and t. Here e is the orthogonal projection to the line in direction e.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherDuke University Press
dc.relation.ispartofseriesDuke Mathematical Journal
dc.rightsIn Copyright
dc.subject.otherFurstenberg sets
dc.subject.otherHausdorff dimension
dc.subject.otherinduction on scales
dc.subject.otherprojections
dc.titleOn the Hausdorff dimension of Furstenberg sets and orthogonal projections in the plane
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202403052274
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange3559-3632
dc.relation.issn0012-7094
dc.relation.numberinseries18
dc.relation.volume172
dc.type.versionacceptedVersion
dc.rights.copyright© 2023 Duke University Press
dc.rights.accesslevelopenAccessfi
dc.subject.ysomittateoria
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p13386
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1215/00127094-2022-0103
jyx.fundinginformationOrponen’s work was partially supported by Academy of Finland grants 309365, 314172, and 321896 via the projects “Quantitative rectifiability in Euclidean and nonEuclidean spaces” and “Incidences on fractals.” Shmerkin’s work was partially supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) discovery grant.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright