dc.contributor.author | Heikkola, Erkki | |
dc.contributor.author | Ito, Kazufumi | |
dc.contributor.author | Toivanen, Jari | |
dc.date.accessioned | 2024-02-27T11:23:31Z | |
dc.date.available | 2024-02-27T11:23:31Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Heikkola, E., Ito, K., & Toivanen, J. (2019). A parallel domain decomposition method for the Helmholtz equation in layered media. <i>SIAM Journal on Scientific Computing</i>, <i>41</i>(5), C505-C521. <a href="https://doi.org/10.1137/18M1230906" target="_blank">https://doi.org/10.1137/18M1230906</a> | |
dc.identifier.other | CONVID_33630819 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/93687 | |
dc.description.abstract | An efficient domain decomposition method and its parallel implementation for the solution of the Helmholtz equation in three-dimensional layered media are considered. A modified trilinear finite element discretization scheme is applied to the equation system leading to fourth-order phase accuracy and thereby reducing the pollution error considerably. The resulting linear system is solved with the GMRES method using a multiplicative nonoverlapping domain decomposition preconditioner with layers defining the subdomains. This right preconditioner is constructed by embedding each layer into a rectangular domain and by employing a fast direct solver. Due to the construction of the preconditioner the iterations can be reduced to a subspace corresponding to the interfaces between the layers. Numerical experiments with several test cases demonstrate the effectiveness and scalability of the proposed method and ability to solve large-scale problems with up to billions of unknowns. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Society for Industrial and Applied Mathematics | |
dc.relation.ispartofseries | SIAM Journal on Scientific Computing | |
dc.rights | In Copyright | |
dc.subject.other | domain decomposition method | |
dc.subject.other | geological survey | |
dc.subject.other | Helmholtz equation | |
dc.subject.other | preconditioned iterative method | |
dc.subject.other | ultrasonic tomography | |
dc.title | A parallel domain decomposition method for the Helmholtz equation in layered media | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202402272159 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | C505–C521 | |
dc.relation.issn | 1064-8275 | |
dc.relation.numberinseries | 5 | |
dc.relation.volume | 41 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2019 Society for Industrial and Applied Mathematics | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.grantnumber | 295897 | |
dc.subject.yso | tomografia | |
dc.subject.yso | sovellettu matematiikka | |
dc.subject.yso | osittaisdifferentiaaliyhtälöt | |
dc.subject.yso | iterointi | |
dc.subject.yso | geologia | |
dc.subject.yso | numeerinen analyysi | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p17798 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p38113 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p12392 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p11753 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p2179 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p15833 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1137/18M1230906 | |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Research Council of Finland | en |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundinginformation | This work was supported by the Academy of Finland under project 295897. | |
dc.type.okm | A1 | |