dc.contributor.author | Kärkkäinen, Tommi | |
dc.contributor.editor | Neittaanmäki, Pekka | |
dc.contributor.editor | Rantalainen, Marja-Leena | |
dc.date.accessioned | 2024-02-14T11:23:12Z | |
dc.date.available | 2024-02-14T11:23:12Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Kärkkäinen, T. (2023). On the Role of Taylor’s Formula in Machine Learning. In P. Neittaanmäki, & M.-L. Rantalainen (Eds.), <i>Impact of Scientific Computing on Science and Society</i> (pp. 275-294). Springer. Computational Methods in Applied Sciences, 58. <a href="https://doi.org/10.1007/978-3-031-29082-4_16" target="_blank">https://doi.org/10.1007/978-3-031-29082-4_16</a> | |
dc.identifier.other | CONVID_183935626 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/93383 | |
dc.description.abstract | The classical Taylor’s formula is an elementary tool in mathematical analysis and function approximation. Its role in the optimization theory, whose data-driven variants have a central role in machine learning training algorithms, is well-known. However, utilization of Taylor’s formula in the derivation of new machine learning methods is not common and the purpose of this article is to introduce such use cases. Both a feedforward neural network and a recently introduced distance-based method are used as data-driven models. We demonstrate and assess the proposed techniques empirically both in unsupervised and supervised learning scenarios. | en |
dc.format.extent | 450 | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.ispartof | Impact of Scientific Computing on Science and Society | |
dc.relation.ispartofseries | Computational Methods in Applied Sciences | |
dc.rights | In Copyright | |
dc.subject.other | Taylor’s formula | |
dc.subject.other | machine learning | |
dc.subject.other | neural networks | |
dc.subject.other | distance-based methods | |
dc.title | On the Role of Taylor’s Formula in Machine Learning | |
dc.type | book part | |
dc.identifier.urn | URN:NBN:fi:jyu-202402141863 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Tekniikka | fi |
dc.contributor.oppiaine | Human and Machine based Intelligence in Learning | fi |
dc.contributor.oppiaine | Engineering | en |
dc.contributor.oppiaine | Human and Machine based Intelligence in Learning | en |
dc.type.uri | http://purl.org/eprint/type/BookItem | |
dc.relation.isbn | 978-3-031-29081-7 | |
dc.type.coar | http://purl.org/coar/resource_type/c_3248 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 275-294 | |
dc.relation.issn | 1871-3033 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2023 the Authors | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | bookPart | |
dc.relation.grantnumber | 315550 | |
dc.relation.grantnumber | 311877 | |
dc.subject.yso | neuroverkot | |
dc.subject.yso | koneoppiminen | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p7292 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21846 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1007/978-3-031-29082-4_16 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Academy Programme, AoF | en |
jyx.fundingprogram | Research profiles, AoF | en |
jyx.fundingprogram | Akatemiaohjelma, SA | fi |
jyx.fundingprogram | Profilointi, SA | fi |
jyx.fundinginformation | The author would like to thank the Academy of Finland for the financial support (grants 311877 and 315550). | |
dc.type.okm | A3 | |