Näytä suppeat kuvailutiedot

dc.contributor.authorKärkkäinen, Tommi
dc.contributor.editorNeittaanmäki, Pekka
dc.contributor.editorRantalainen, Marja-Leena
dc.date.accessioned2024-02-14T11:23:12Z
dc.date.available2024-02-14T11:23:12Z
dc.date.issued2023
dc.identifier.citationKärkkäinen, T. (2023). On the Role of Taylor’s Formula in Machine Learning. In P. Neittaanmäki, & M.-L. Rantalainen (Eds.), <i>Impact of Scientific Computing on Science and Society</i> (pp. 275-294). Springer. Computational Methods in Applied Sciences, 58. <a href="https://doi.org/10.1007/978-3-031-29082-4_16" target="_blank">https://doi.org/10.1007/978-3-031-29082-4_16</a>
dc.identifier.otherCONVID_183935626
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/93383
dc.description.abstractThe classical Taylor’s formula is an elementary tool in mathematical analysis and function approximation. Its role in the optimization theory, whose data-driven variants have a central role in machine learning training algorithms, is well-known. However, utilization of Taylor’s formula in the derivation of new machine learning methods is not common and the purpose of this article is to introduce such use cases. Both a feedforward neural network and a recently introduced distance-based method are used as data-driven models. We demonstrate and assess the proposed techniques empirically both in unsupervised and supervised learning scenarios.en
dc.format.extent450
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofImpact of Scientific Computing on Science and Society
dc.relation.ispartofseriesComputational Methods in Applied Sciences
dc.rightsIn Copyright
dc.subject.otherTaylor’s formula
dc.subject.othermachine learning
dc.subject.otherneural networks
dc.subject.otherdistance-based methods
dc.titleOn the Role of Taylor’s Formula in Machine Learning
dc.typebook part
dc.identifier.urnURN:NBN:fi:jyu-202402141863
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTekniikkafi
dc.contributor.oppiaineHuman and Machine based Intelligence in Learningfi
dc.contributor.oppiaineEngineeringen
dc.contributor.oppiaineHuman and Machine based Intelligence in Learningen
dc.type.urihttp://purl.org/eprint/type/BookItem
dc.relation.isbn978-3-031-29081-7
dc.type.coarhttp://purl.org/coar/resource_type/c_3248
dc.description.reviewstatuspeerReviewed
dc.format.pagerange275-294
dc.relation.issn1871-3033
dc.type.versionacceptedVersion
dc.rights.copyright© 2023 the Authors
dc.rights.accesslevelopenAccessfi
dc.type.publicationbookPart
dc.relation.grantnumber315550
dc.relation.grantnumber311877
dc.subject.ysoneuroverkot
dc.subject.ysokoneoppiminen
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p7292
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1007/978-3-031-29082-4_16
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Programme, AoFen
jyx.fundingprogramResearch profiles, AoFen
jyx.fundingprogramAkatemiaohjelma, SAfi
jyx.fundingprogramProfilointi, SAfi
jyx.fundinginformationThe author would like to thank the Academy of Finland for the financial support (grants 311877 and 315550).
dc.type.okmA3


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright