Näytä suppeat kuvailutiedot

dc.contributor.authorHao, Xinyu
dc.contributor.authorZheng, Dongying
dc.contributor.authorKhan, Muhanmmad
dc.contributor.authorWang, Lixia
dc.contributor.authorHämäläinen, Timo
dc.contributor.authorCong, Fengyu
dc.contributor.authorXu, Hongming
dc.contributor.authorSong, Kedong
dc.date.accessioned2024-02-08T13:42:36Z
dc.date.available2024-02-08T13:42:36Z
dc.date.issued2023
dc.identifier.citationHao, X., Zheng, D., Khan, M., Wang, L., Hämäläinen, T., Cong, F., Xu, H., & Song, K. (2023). Machine Learning Models for Predicting Adverse Pregnancy Outcomes in Pregnant Women with Systemic Lupus Erythematosus. <i>Diagnostics</i>, <i>13</i>(4), Article 612. <a href="https://doi.org/10.3390/diagnostics13040612" target="_blank">https://doi.org/10.3390/diagnostics13040612</a>
dc.identifier.otherCONVID_176813189
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/93306
dc.description.abstractPredicting adverse outcomes is essential for pregnant women with systemic lupus erythematosus (SLE) to minimize risks. Applying statistical analysis may be limited for the small sample size of childbearing patients, while the informative medical records could be provided. This study aimed to develop predictive models applying machine learning (ML) techniques to explore more information. We performed a retrospective analysis of 51 pregnant women exhibiting SLE, including 288 variables. After correlation analysis and feature selection, six ML models were applied to the filtered dataset. The efficiency of these overall models was evaluated by the Receiver Operating Characteristic Curve. Meanwhile, real‐time models with different timespans based on gestation were also explored. Eighteen variables demonstrated statistical differences between the two groups; more than forty variables were screened out by ML variable selection strategies as contributing predictors while the overlap of variables were the influential indicators testified by the two selection strategies. The Random Forest (RF) algorithm demonstrated the best discrimination ability under the current dataset for overall predictive models regardless of the data missing rate, while Multi‐Layer Perceptron models ranked second. Meanwhile, RF achieved best performance when assessing the real‐time predictive accuracy of models. ML models could compensate the limitation of statistical methods when the small sample size problem happens along with numerous variables acquired, while RF classifier performed relatively best when applied to such structured medical records.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherMDPI
dc.relation.ispartofseriesDiagnostics
dc.rightsCC BY 4.0
dc.subject.otherprediction
dc.subject.othermachine learning
dc.subject.othersystemic lupus erythematosus
dc.subject.otherSLE
dc.subject.otherpregnancy
dc.subject.othergestation
dc.subject.otherrandom forest
dc.titleMachine Learning Models for Predicting Adverse Pregnancy Outcomes in Pregnant Women with Systemic Lupus Erythematosus
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202402081789
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineSecure Communications Engineering and Signal Processingfi
dc.contributor.oppiaineTekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.contributor.oppiaineSecure Communications Engineering and Signal Processingen
dc.contributor.oppiaineEngineeringen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2075-4418
dc.relation.numberinseries4
dc.relation.volume13
dc.type.versionacceptedVersion
dc.rights.copyright© 2023 the Authors
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysopunahukka
dc.subject.ysoreumataudit
dc.subject.ysotilastomenetelmät
dc.subject.ysoennakointi
dc.subject.ysokoneoppiminen
dc.subject.ysoriskitekijät
dc.subject.ysoraskaus
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p8745
jyx.subject.urihttp://www.yso.fi/onto/yso/p8747
jyx.subject.urihttp://www.yso.fi/onto/yso/p3127
jyx.subject.urihttp://www.yso.fi/onto/yso/p17353
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p13277
jyx.subject.urihttp://www.yso.fi/onto/yso/p8749
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.3390/diagnostics13040612
jyx.fundinginformationThis research was funded by Fundamental Research Funds for the Central Universities, grant number DUT21YG135.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0