Show simple item record

dc.contributor.authorTorvinen, Petra
dc.contributor.authorRuotsalainen, Keijo S.
dc.contributor.authorZhao, Shuang
dc.contributor.authorCronin, Neil
dc.contributor.authorOhtonen, Olli
dc.contributor.authorLinnamo, Vesa
dc.date.accessioned2024-02-07T13:38:07Z
dc.date.available2024-02-07T13:38:07Z
dc.date.issued2024
dc.identifier.citationTorvinen, P., Ruotsalainen, K. S., Zhao, S., Cronin, N., Ohtonen, O., & Linnamo, V. (2024). Evaluation of 3D Markerless Motion Capture System Accuracy during Skate Skiing on a Treadmill. <i>Bioengineering</i>, <i>11</i>(2), Article 136. <a href="https://doi.org/10.3390/bioengineering11020136" target="_blank">https://doi.org/10.3390/bioengineering11020136</a>
dc.identifier.otherCONVID_202889122
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/93296
dc.description.abstractIn this study, we developed a deep learning-based 3D markerless motion capture system for skate skiing on a treadmill and evaluated its accuracy against marker-based motion capture during G1 and G3 skating techniques. Participants performed roller skiing trials on a skiing treadmill. Trials were recorded with two synchronized video cameras (100 Hz). We then trained a custom model using DeepLabCut, and the skiing movements were analyzed using both DeepLabCut-based markerless motion capture and marker-based motion capture systems. We statistically compared joint centers and joint vector angles between the methods. The results demonstrated a high level of agreement for joint vector angles, with mean differences ranging from −2.47° to 3.69°. For joint center positions and toe placements, mean differences ranged from 24.0 to 40.8 mm. This level of accuracy suggests that our markerless approach could be useful as a skiing coaching tool. The method presents interesting opportunities for capturing and extracting value from large amounts of data without the need for markers attached to the skier and expensive cameras.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherMDPI AG
dc.relation.ispartofseriesBioengineering
dc.rightsCC BY 4.0
dc.subject.otherkinematics
dc.subject.othermotion analysis
dc.subject.otherartificial intelligence
dc.subject.othertreadmill skiing
dc.subject.othermarkerless motion capture
dc.titleEvaluation of 3D Markerless Motion Capture System Accuracy during Skate Skiing on a Treadmill
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202402071781
dc.contributor.laitosLiikuntatieteellinen tiedekuntafi
dc.contributor.laitosFaculty of Sport and Health Sciencesen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2306-5354
dc.relation.numberinseries2
dc.relation.volume11
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 the Authors
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumberA77274
dc.subject.ysoluisteluhiihto
dc.subject.ysoliike
dc.subject.ysoliikeoppi
dc.subject.ysotekoäly
dc.subject.ysoliikkeenkaappaus
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p18303
jyx.subject.urihttp://www.yso.fi/onto/yso/p706
jyx.subject.urihttp://www.yso.fi/onto/yso/p16028
jyx.subject.urihttp://www.yso.fi/onto/yso/p2616
jyx.subject.urihttp://www.yso.fi/onto/yso/p27199
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.3390/bioengineering11020136
dc.relation.funderKainuun liittofi
dc.relation.funderRegional Council of Kainuuen
jyx.fundingprogramEAKR Euroopan aluekehitysrahasto, React-EUfi
jyx.fundingprogramERDF European Regional Development Fund, React-EUen
jyx.fundinginformationResearch was funded partly by the “Smart Track” project (ERDF, 11853/09 020101/2021 Kainuu).
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0