Show simple item record

dc.contributor.authorBal, Kaushik
dc.contributor.authorMohanta, Kaushik
dc.contributor.authorRoy, Prosenjit
dc.date.accessioned2024-01-25T12:30:04Z
dc.date.available2024-01-25T12:30:04Z
dc.date.issued2024
dc.identifier.citationBal, K., Mohanta, K., & Roy, P. (2024). Magnetic fractional Poincaré inequality in punctured domains. <i>Journal of Mathematical Analysis and Applications</i>, <i>535</i>(1), Article 128103. <a href="https://doi.org/10.1016/j.jmaa.2024.128103" target="_blank">https://doi.org/10.1016/j.jmaa.2024.128103</a>
dc.identifier.otherCONVID_202055177
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/93060
dc.description.abstractWe study Poincaré-Wirtinger type inequalities in the framework of magnetic fractional Sobolev spaces. In the local case, Lieb et al. (2003) [19] showed that, if a bounded domain Ω is the union of two disjoint sets Γ and Λ, then the Lp-norm of a function calculated on Ω is dominated by the sum of magnetic seminorms of the function, calculated on Γ and Λ separately. We show that the straightforward generalisation of their result to nonlocal setup does not hold true in general. We provide an alternative formulation of the problem for the nonlocal case. As an auxiliary result, we also show that the set of eigenvalues of the magnetic fractional Laplacian is discrete.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesJournal of Mathematical Analysis and Applications
dc.rightsCC BY 4.0
dc.subject.otherfractional Poincaré inequality
dc.subject.othermagnetic fractional Sobolev space
dc.subject.othermagnetic fractional Laplacian
dc.titleMagnetic fractional Poincaré inequality in punctured domains
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202401251548
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0022-247X
dc.relation.numberinseries1
dc.relation.volume535
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 The Author(s). Published by Elsevier Inc.
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber323960
dc.subject.ysoepäyhtälöt
dc.subject.ysofunktionaalianalyysi
dc.subject.ysofunktiot
dc.subject.ysoosittaisdifferentiaaliyhtälöt
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p15720
jyx.subject.urihttp://www.yso.fi/onto/yso/p17780
jyx.subject.urihttp://www.yso.fi/onto/yso/p7097
jyx.subject.urihttp://www.yso.fi/onto/yso/p12392
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1016/j.jmaa.2024.128103
dc.relation.funderSuomen Akatemiafi
dc.relation.funderResearch Council of Finlanden
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundinginformationResearch work of the first author is funded by Matrics grant (MTR/2020/000594). Research work of the second author is funded by Academy of Finland (Suomen Akatemia) grant: Geometrinen Analyysi (21000046081). Research work of the third author is funded by Matrics grant (MTR/2019/000585) and by Core Research Grant (CRG/2022/007867) of SERB.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0