Disentangling the effects of management and climate change on habitat suitability for saproxylic species in boreal forests

Abstract
Forest degradation induced by intensive forest management and temperature increase by climate change are resulting in biodiversity decline in boreal forests. Intensive forest management and high-end climate emission scenarios can further reduce the amount and diversity of deadwood, the limiting factor for habitats for saproxylic species in European boreal forests. The magnitude of their combined effects and how changes in forest management can affect deadwood diversity under a range of climate change scenarios are poorly understood. We used forest growth simulations to evaluate how forest management and climate change will individually and jointly affect habitats of red-listed saproxylic species in Finland. We simulated seven forest management regimes and three climate scenarios (reference, RCP4.5 and RCP8.5) over 100 years. Management regimes included set aside, continuous cover forestry, business-as-usual (BAU) and four modifications of BAU. Habitat suitability was assessed using a species-specific habitat suitability index, including 21 fungal and invertebrate species groups. “Winner” and “loser” species were identified based on the modelled impacts of forest management and climate change on their habitat suitability. We found that forest management had a major impact on habitat suitability of saproxylic species compared to climate change. Habitat suitability index varied by over 250% among management regimes, while overall change in habitat suitability index caused by climate change was on average only 2%. More species groups were identified as winners than losers from impacts of climate change (52%–95% were winners, depending on the climate change scenario and management regime). The largest increase in habitat suitability index was achieved under set aside (254%) and the climate scenario RCP8.5 (> 2%), while continuous cover forestry was the most suitable regime to increase habitat suitability of saproxylic species (up to + 11%) across all climate change scenarios. Our results show that close-to-nature management regimes (e.g., continuous cover forestry and set aside) can increase the habitat suitability of many saproxylic boreal species more than the basic business-as-usual regime. This suggests that biodiversity loss of many saproxylic species in boreal forests can be mitigated through improved forest management practices, even as climate change progresses.
Main Authors
Format
Articles Research article
Published
2024
Series
Subjects
Publication in research information system
Publisher
Springer
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-202401191394Käytä tätä linkitykseen.
Review status
Peer reviewed
ISSN
1007-662X
DOI
https://doi.org/10.1007/s11676-023-01678-3
Language
English
Published in
Journal of Forestry Research
Citation
  • Ekman, E., Triviño, M., Blattert, C., Mazziotta, A., Potterf, M., & Eyvindson, K. (2024). Disentangling the effects of management and climate change on habitat suitability for saproxylic species in boreal forests. Journal of Forestry Research, 35, Article 34. https://doi.org/10.1007/s11676-023-01678-3
License
CC BY 4.0Open Access
Funder(s)
Research Council of Finland
Kone Foundation
Funding program(s)
ERA-NET, artikla 174 -ohjelmat
ERA-NET Programmes
Research Council of Finland
Additional information about funding
Open access funding provided by Norwegian University of Life Sciences. Project Funding: M.T. was supported by the Kone Foundation (application 202206136). C.B. was supported by the Multiforest - project, which is funded under the umbrella of ERA-NET Cofund Forest-Value by Academy of Finland (326321). A. M. was supported by the Academy of Finland Flagship UNITE (337653). M.P. was funded by Bavarian State Ministry of the Environment and Consumer Protection. K.E. was supported partly by the Norwegian Research Council (NFR project 302701 Climate Smart Forestry Norway) and by the Academy of Finland Flagship UNITE (337653).
Copyright© The Author(s) 2024

Share