Local controllability does imply global controllability
Boscain, U., Cannarsa, D., Franceschi, V., & Sigalotti, M. (2023). Local controllability does imply global controllability. Comptes Rendus Mathematique, 361, 1813-1822. https://doi.org/10.5802/crmath.538
Julkaistu sarjassa
Comptes Rendus MathematiquePäivämäärä
2023Tekijänoikeudet
© 2023 the Authors
We say that a control system is locally controllable if the attainable set from any state x contains an open neighborhood of x, while it is controllable if the attainable set from any state is the entire state manifold. We show in this note that a control system satisfying local controllability is controllable. Our self-contained proof is alternative to the combination of two previous results by Kevin Grasse.
Julkaisija
Academie des SciencesISSN Hae Julkaisufoorumista
1631-073XAsiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/197542391
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SALisätietoja rahoituksesta
This work was partially supported by the ANR-DFG project ANR-22-CE92-0077-01 CoRoMo. The second author is supported by the Academy of Finland (grant 322898 ‘Sub-Riemannian Geometry via Metricgeometry and Lie-group Theory’). This project has received financial support from the CNRS through the MITI interdisciplinary programs.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Sub-Finsler Geodesics on the Cartan Group
Ardentov, Andrei A.; Le Donne, Enrico; Sachkov, Yuri L. (Pleiades Publishing, 2019)This paper is a continuation of the work by the same authors on the Cartan groupequipped with the sub-Finsler∞norm. We start by giving a detailed presentation of thestructure of bang-bang extremal trajectories. Then we ... -
The Egan problem on the pull-in range of type 2 PLLs
Kuznetsov, Nikolay V.; Lobachev, Mikhail Y.; Yuldashev, Marat V.; Yuldashev, Renat V. (Institute of Electrical and Electronics Engineers (IEEE), 2021)In 1981, famous engineer William F. Egan conjectured that a higher-order type 2 PLL with an infinite hold-in range also has an infinite pull-in range, and supported his conjecture with some third-order PLL implementations. ... -
A variational inequality approach to constrained control problems
Neittaanmäki, Pekka; Tiba, D. (University of Jyväskylä, 1986) -
Time-delay control for stabilization of the Shapovalov mid-size firm model
Alexeeva, T.A.; Barnett, W.A.; Kuznetsov, N.V.; Mokaev, T.N. (Elsevier, 2020)Control and stabilization of irregular and unstable behavior of dynamic systems (including chaotic processes) are interdisciplinary problems of interest to a variety of scientific fields and applications. Using the control ... -
Periodic Controls in Step 2 Strictly Convex Sub-Finsler Problems
Sachkov, Yuri L. (Pleiades Publishing, 2020)We consider control-linear left-invariant time-optimal problems on step 2 Carnot groups with a strictly convex set of control parameters (in particular, sub-Finsler problems). We describe all Casimirs linear in momenta on ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.