Näytä suppeat kuvailutiedot

dc.contributor.authorWang, Yueyang
dc.contributor.authorSrinivasan, Aravinda Ramakrishnan
dc.contributor.authorJokinen, Jussi, P. P.
dc.contributor.authorOulasvirta, Antti
dc.contributor.authorMarkkula, Gustav
dc.date.accessioned2024-01-11T12:37:29Z
dc.date.available2024-01-11T12:37:29Z
dc.date.issued2023
dc.identifier.citationWang, Y., Srinivasan, A. R., Jokinen, J., Oulasvirta, A., & Markkula, G. (2023). Modeling human road crossing decisions as reward maximization with visual perception limitations. In <i>2023 IEEE Intelligent Vehicles Symposium (IV)</i>. IEEE. IEEE Intelligent Vehicles Symposium. <a href="https://doi.org/10.1109/IV55152.2023.10186617" target="_blank">https://doi.org/10.1109/IV55152.2023.10186617</a>
dc.identifier.otherCONVID_184697721
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/92697
dc.description.abstractUnderstanding the interaction between different road users is critical for road safety and automated vehicles (AVs). Existing mathematical models on this topic have been proposed based mostly on either cognitive or machine learning (ML) approaches. However, current cognitive models are incapable of simulating road user trajectories in general scenarios, and ML models lack a focus on the mechanisms generating the behavior and take a high-level perspective which can cause failures to capture important human-like behaviors. Here, we develop a model of human pedestrian crossing decisions based on computational rationality, an approach using deep reinforcement learning (RL) to learn boundedly optimal behavior policies given human constraints, in our case a model of the limited human visual system. We show that the proposed combined cognitive-RL model captures human-like patterns of gap acceptance and crossing initiation time. Interestingly, our model’s decisions are sensitive to not only the time gap, but also the speed of the approaching vehicle, something which has been described as a “bias” in human gap acceptance behavior. However, our results suggest that this is instead a rational adaption to human perceptual limitations. Moreover, we demonstrate an approach to accounting for individual differences in computational rationality models, by conditioning the RL policy on the parameters of the human constraints. Our results demonstrate the feasibility of generating more human-like road user behavior by combining RL with cognitive models.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherIEEE
dc.relation.ispartof2023 IEEE Intelligent Vehicles Symposium (IV)
dc.relation.ispartofseriesIEEE Intelligent Vehicles Symposium
dc.rightsCC BY 4.0
dc.subject.otherhuman behavior
dc.subject.othercomputational rationality
dc.subject.othernoisy perception
dc.subject.otherreinforcement learning
dc.subject.otheradaptation models
dc.subject.otherpedestrians
dc.subject.otherintelligent vehicles
dc.subject.othercomputational modeling
dc.subject.othermathematical models
dc.subject.otherroad safety
dc.titleModeling human road crossing decisions as reward maximization with visual perception limitations
dc.typeconferenceObject
dc.identifier.urnURN:NBN:fi:jyu-202401111198
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineKognitiotiedefi
dc.contributor.oppiaineCognitive Scienceen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.relation.isbn979-8-3503-4692-3
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.relation.issn1931-0587
dc.type.versionacceptedVersion
dc.rights.copyright© Authors 2023
dc.rights.accesslevelopenAccessfi
dc.relation.conferenceIEEE Intelligent Vehicles Symposium
dc.subject.ysotieliikenne
dc.subject.ysomatemaattiset mallit
dc.subject.ysokoneoppiminen
dc.subject.ysomallintaminen
dc.subject.ysokäyttäytyminen
dc.subject.ysohavaitseminen
dc.subject.ysokognitiiviset prosessit
dc.subject.ysojalankulkijat
dc.subject.ysoliikenneturvallisuus
dc.subject.ysoliikenne
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p8934
jyx.subject.urihttp://www.yso.fi/onto/yso/p11401
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p3533
jyx.subject.urihttp://www.yso.fi/onto/yso/p3625
jyx.subject.urihttp://www.yso.fi/onto/yso/p5293
jyx.subject.urihttp://www.yso.fi/onto/yso/p5283
jyx.subject.urihttp://www.yso.fi/onto/yso/p9420
jyx.subject.urihttp://www.yso.fi/onto/yso/p517
jyx.subject.urihttp://www.yso.fi/onto/yso/p3466
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1109/IV55152.2023.10186617
jyx.fundinginformationThis project has received funding from UK Engineering and Physical Sciences Research Council under fellowship named COMMOTIONS - Computational Models of Traffic Interactions for Testing of Automated Vehicles - EP/S005056/1.
dc.type.okmA4


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0