Hybrid stock analysis model for financial market forecasting
Korablyov, M., Fomichov, O., Antonov, D., Dykyi, S., Ivanisenko, I., & Lutskyy, S. (2023). Hybrid stock analysis model for financial market forecasting. In CSIT 2023 : IEEE 18th International Conference on Computer Science and Information Technologies. IEEE. Proceedings of the International Conference on Computer Science and Information Technologies. https://doi.org/10.1109/CSIT61576.2023.10324069
Published in
Proceedings of the International Conference on Computer Science and Information TechnologiesAuthors
Date
2023Discipline
TekniikkaSecure Communications Engineering and Signal ProcessingEngineeringSecure Communications Engineering and Signal ProcessingAccess restrictions
Embargoed until: 2025-11-27Request copy from author
Copyright
© 2023, IEEE
Various approaches are used to analyze stocks for the purpose of forecasting the financial market. Because stocks exist in a large and interconnected market, traditional methods based on time series information for a single stock do not take into account the relationships between other stocks. Taking into account the relationships between stocks can improve the effectiveness of stock price forecasting. The paper proposes a hybrid stock analysis model that uses a combination of various intelligent technologies: recurrent neural networks (RNN), artificial immune systems (AIS), and graphical neural networks (GNN). Time series in the form of daily sales volumes and stock prices are fed to the inputs of the RNN to obtain stock price characteristics. These characteristics are fed to the input of the clustering model to obtain information about the relationship between stocks in the form of a graph with selected clusters of stocks. The GNN inputs are a graph whose nodes display the characteristics of a stock exchange time series, and the arcs show the connectivity between them. The outputs of GNN are stock returns. Using this model allows you to more effectively predict the financial market and make more informed decisions in order to obtain high profits with low risks.
...
Publisher
IEEEParent publication ISBN
979-8-3503-6047-9Conference
IEEE International Conference on Computer Science and Information TechnologiesIs part of publication
CSIT 2023 : IEEE 18th International Conference on Computer Science and Information TechnologiesISSN Search the Publication Forum
2766-3655Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/194876261
Metadata
Show full item recordCollections
License
Related items
Showing items with similar title or keywords.
-
Dynamics of the Shapovalov mid-size firm model
Alexeeva, Tatyana A.; Barnett, William A.; Kuznetsov, Nikolay V.; Mokaev, Timur N. (Elsevier, 2020)Forecasting and analyses of the dynamics of financial and economic processes such as deviations of macroeconomic aggregates (GDP, unemployment, and inflation) from their long-term trends, asset markets volatility, etc., ... -
Species distributions models may predict accurately future distributions but poorly how distributions change : A critical perspective on model validation
Piirainen, Sirke; Lehikoinen, Aleksi; Husby, Magne; Kålås, John Atle; Lindström, Åke; Ovaskainen, Otso (Wiley, 2023)Aim Species distribution models (SDMs) are widely used to make predictions on how species distributions may change as a response to climatic change. To assess the reliability of those predictions, they need to be critically ... -
Sentimenttimuuttujat tuottojen ja romahduksien ennustajina
Kakko, Joonas (2018)Tämä Pro gradu –tutkielma tarkastelee sentimentin ennustusvoimaa Yhdysvaltojen osakemarkkinoilla. Tutkimuksen tavoitteena on selvittää, voiko sentimenttimuuttujilla ennustaa tulevia tuottoja tai ennakoida markkinaromahduksia. ... -
Prediction and interpolation of time series by state space models
Helske, Jouni (University of Jyväskylä, 2015)A large amount of data collected today is in the form of a time series. In order to make realistic inferences based on time series forecasts, in addition to point predictions, prediction intervals or other measures of ... -
Effect of variable selection strategy on the predictive models for adverse pregnancy outcomes of pre-eclampsia : A retrospective study
Zheng, Dongying; Hao, Xinyu; Khan, Muhanmmad; Kang, Fuli; Li, Fan; Hämäläinen, Timo; Wang, Lixia (Scholar Media Publishing Company, 2024)Objectives: The improvement of prediction for adverse pregnancy outcomes is quite essential to the women suffering from pre-eclampsia, while the collection of predictive indicators is the prerequisite. The traditional ...