Näytä suppeat kuvailutiedot

dc.contributor.advisorMäkelä, Antti
dc.contributor.advisorMiettinen, Arttu
dc.contributor.advisorPulkkinen, Seppo
dc.contributor.authorHuttunen, Joona
dc.date.accessioned2023-12-08T06:53:43Z
dc.date.available2023-12-08T06:53:43Z
dc.date.issued2023
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/92229
dc.description.abstractMethods for nowcasting lightning using weather radar data were developed using machine learning models. Reflectivity was selected as the main feature for the prediction. The purpose was to examine if machine learning applications could be used to nowcast thunderstorms with minimal data sets. The emphasis was to find out a model which is based on binary image classification and doesn’t require large sets of training data to work sufficiently. Convolutional neural network was the first choice. Accuracy for the model was 0.83. Another approach was made using random forest model. Precision for class 0 (no lightning) was 0.52, and for class (recorded lightning) 1, 0.90 and with total accuracy of 0.88 To improve the sets more features should be used and possibly larger data sets.en
dc.format.extent59
dc.language.isoen
dc.rightsIn Copyright
dc.subject.othernowcasting
dc.titleIdentifying and forecasting thunderstorms using weather radar data and machine learning
dc.identifier.urnURN:NBN:fi:jyu-202312088228
dc.type.ontasotMaster’s thesisen
dc.type.ontasotPro gradu -tutkielmafi
dc.contributor.tiedekuntaMatemaattis-luonnontieteellinen tiedekuntafi
dc.contributor.tiedekuntaFaculty of Sciencesen
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.yliopistoJyväskylän yliopistofi
dc.contributor.yliopistoUniversity of Jyväskyläen
dc.contributor.oppiaineFysiikkafi
dc.contributor.oppiainePhysicsen
dc.rights.copyright© The Author(s)
dc.rights.accesslevelopenAccess
dc.contributor.oppiainekoodi4021
dc.subject.ysoilmakehä
dc.subject.ysosalamat
dc.subject.ysoluokitus (toiminta)
dc.subject.ysokoneoppiminen
dc.subject.ysosäänennustus
dc.subject.ysoukkonen
dc.subject.ysoatmosphere (earth)
dc.subject.ysolightnings
dc.subject.ysoclassification
dc.subject.ysomachine learning
dc.subject.ysoweather forecasting
dc.subject.ysothunder
dc.rights.urlhttps://rightsstatements.org/page/InC/1.0/


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright