The effect of atmospherically relevant aminium salts on water uptake
Hyttinen, N. (2023). The effect of atmospherically relevant aminium salts on water uptake. Atmospheric Chemistry and Physics, 23(21), 13809-13817. https://doi.org/10.5194/acp-23-13809-2023
Julkaistu sarjassa
Atmospheric Chemistry and PhysicsTekijät
Päivämäärä
2023Tekijänoikeudet
© Author(s) 2023
Atmospheric new particle formation is initiated by clustering of gaseous precursors, such as small acids and bases. The hygroscopic properties of those precursors therefore affect the hygroscopic properties of aerosol particles. In this work, the water uptake of different salts consisting of atmospheric small acids and amines was studied computationally using the conductor-like screening model for real solvents (COSMO-RS). This method allows for the prediction of water activities in atmospherically relevant salts that have not been included in other thermodynamics models. Water activities are reported here for binary aqueous salt solutions, as well as ternary solutions containing proxies for organic aerosol constituents. The order of the studied cation species regarding water activities is similar in sulfate, iodate, and methylsulfonate, as well as in bisulfate and nitrate. Predicted water uptake strengths (in mole fraction) conform to the following orders: tertiary > secondary > primary amines and guanidinos > amino acids. The addition of water-soluble organic to the studied salts generally leads to weaker water uptake compared to pure salts. On the other hand, water-insoluble organic likely phase separates with aqueous salt solutions, leading to minimal effects on water uptake.
...
Julkaisija
Copernicus GmbHISSN Hae Julkaisufoorumista
1680-7316Asiasanat
Julkaisuun liittyvä(t) tutkimusaineisto(t)
Hyttinen, Noora. (2023). Supplementary data for the article "The effect of atmospherically relevant aminium salts on water uptake". University of Jyväskylä. https://doi.org/10.17011/jyx/dataset/89238. https://urn.fi/URN:NBN:fi:jyu-202309255246Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/194369696
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Tutkijatohtori, SALisätietoja rahoituksesta
This research has been supported by the Research Council of Finland (grant no. 338171).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Modeling atmospheric aging of small-scale wood combustion emissions : distinguishing causal effects from non-causal associations
Leinonen, Ville; Tiitta, Petri; Sippula, Olli; Czech, Hendryk; Leskinen, Ari; Isokääntä, Sini; Karvanen, Juha; Mikkonen, Santtu (Royal Society of Chemistry (RSC), 2022)Small-scale wood combustion is a significant source of particulate emissions. Atmospheric transformation of wood combustion emissions is a complex process involving multiple compounds interacting simultaneously. Thus, an ... -
Towards automated inclusion of autoxidation chemistry in models : from precursors to atmospheric implications
Pichelstorfer, Lukas; Roldin, Pontus; Rissanen, Matti; Hyttinen, Noora; Garmash, Olga; Xavier, Carlton; Zhou, Putian; Clusius, Petri; Foreback, Benjamin; Golin, Almeida Thomas; Deng, Chenjuan; Baykara, Metin; Kurten, Theo; Boy, Michael (Royal Society of Chemistry, 2024)In the last few decades, atmospheric formation of secondary organic aerosols (SOA) has gained increasing attention due to their impact on air quality and climate. However, methods to predict their abundance are mainly ... -
Supplementary data for the article "The effect of atmospherically relevant aminium salts on water uptake"
Hyttinen, Noora (University of Jyväskylä, 2023)Supplementary data for the article "The effect of atmospherically relevant aminium salts on water uptake". Contains a database of cosmo files used in the COSMOtherm calculations presented in the article. The files are ... -
Machine Learning for Predicting Chemical Potentials of Multifunctional Organic Compounds in Atmospherically Relevant Solutions
Hyttinen, Noora; Pihlajamäki, Antti; Häkkinen, Hannu (American Chemical Society (ACS), 2022)We have trained the Extreme Minimum Learning Machine (EMLM) machine learning model to predict chemical potentials of individual conformers of multifunctional organic compounds containing carbon, hydrogen, and oxygen. The ... -
Microscopic Insights Into the Formation of Methanesulfonic Acid–Methylamine–Ammonia Particles Under Acid-Rich Conditions
Liu, Min; Myllys, Nanna; Han, Yaning; Wang, Zhongteng; Chen, Liang; Liu, Wei; Xu, Jing (Frontiers Media SA, 2022)Understanding the microscopic mechanisms of new particle formation under acid-rich conditions is of significance in atmospheric science. Using quantum chemistry calculations, we investigated the microscopic formation ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.