Discrete exterior calculus and exact controllability for time-harmonic acoustic wave simulation
Tekijät
Päivämäärä
2023Tekijänoikeudet
© The Author(s)
Diskreetti ulkoinen laskenta (engl, discrete exterior calculus, DEC) on differentiaaliyhtälöiden ratkaisemiseen soveltuva diskretointimenetelmä,
joka säilyttää tiettyjä fysikaalisten mallien geometrisia ominaisuuksia ja tuottaa laskennallisesti tehokkaita algoritmeja. Tutkielmassa tarkastellaan keinoja tehostaa DEC:n suorituskykyä aikaharmonisten ratkaisujen selvittämisessä akustisten aaltojen sirontaa kuvaaville tehtäville. Tähän käytetään harmonisille malleille suunniteltuja operaattoreita ja eksaktiin kontrolloitavuuteen perustuvaa optimointimenetelmää. Toteutetuissa kokeiluissa harmoniset operaattorit lisäävät menetelmän tarkkuutta huomattavasti, kun taas kontrollimenetelmä osoittautuu hyväksi valinnaksi vain tehtävissä, joiden geometria on huomattavan epäkonveksia. Laskentaverkon laadulla on suuri merkitys tutkittujen menetelmien tarkkuudessa ja stabiilisuudessa. Discrete exterior calculus (DEC) is a discretization method for differential equations which preserves important geometric properties of physical models and produces computationally efficient algorithms. We investigate ways to improve the performance of DEC in the context of time-periodic solutions to acoustic wave scattering problems by using operators purpose-built for harmonic problems and an optimization approach based on exact controllability. The harmonic operators are found to improve accuracy significantly, while the controllability method is found to be a good choice only in problems with highly nonconvex geometry. Computation mesh quality is identified as a key issue in the accuracy and stability of these methods.
Asiasanat
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Pro gradu -tutkielmat [29556]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Time-harmonic electromagnetics with exact controllability and discrete exterior calculus
Mönkölä, Sanna; Räbinä, Jukka; Rossi, Tuomo (Academie des Sciences, 2023)In this paper, we apply the exact controllability concept for time-harmonic electromagnetic scattering. The problem is presented in terms of the differential forms, and the discrete exterior calculus is utilized for spatial ... -
Comparison of finite element and discrete exterior calculus in computation of time-harmonic wave propagation with controllability
Saksa, Tytti (Elsevier, 2025)This paper discusses computation of time-harmonic wave problems using a mixed formulation and the controllability method introduced by Roland Glowinski. As an example, a scattering problem (in an exterior domain) is ... -
Systematic implementation of higher order Whitney forms in methods based on discrete exterior calculus
Lohi, Jonni (Springer, 2022)We present a systematic way to implement higher order Whitney forms in numerical methods based on discrete exterior calculus. Given a simplicial mesh, we first refine the mesh into smaller simplices which can be used to ... -
On a numerical solution of the Maxwell equations by discrete exterior calculus
Räbinä, Jukka (University of Jyväskylä, 2014) -
Discrete exterior calculus for photonic crystal waveguides
Mönkölä, Sanna; Räty, Joona (John Wiley & Sons, 2023)The discrete exterior calculus (DEC) is very promising, though not yet widely used, discretization method for photonic crystal (PC) waveguides. It can be seen as a generalization of the finite difference time domain (FDTD) ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.