Evidence of nonstatistical neutron emission following β decay near doubly magic 132Sn
IDS Collaboration. (2023). Evidence of nonstatistical neutron emission following β decay near doubly magic 132Sn. Physical Review C, 108, Article 024311. https://doi.org/10.1103/PhysRevC.108.024311
Julkaistu sarjassa
Physical Review CTekijät
Päivämäärä
2023Tekijänoikeudet
©2023 American Physical Society
Models of the β-delayed neutron emission (βn) assume that neutrons are emitted statistically via an intermediate compound nucleus post β decay. Evidence to the contrary was found in an 134Inβ-decay experiment carried out at ISOLDE CERN. Neutron emission probabilities from the unbound states in 134Sn to known low-lying, single-particle states in 133Sn were measured. The neutron energies were determined using the time-of-flight technique, and the subsequent decay of excited states in 133Sn was studied using γ-ray detectors. Individual βn probabilities were determined by correlating the relative intensities and energies of neutrons and γ rays. The experimental data disagree with the predictions of representative statistical models which are based upon the compound nucleus postulate. Our results suggest that violation of the compound nucleus assumption may occur in β-delayed neutron emission. This impacts the neutron-emission probabilities and other properties of nuclei participating in the r-process. A model of neutron emission, which links the observed neutron emission probabilities to nuclear shell effects, is proposed.
...
Julkaisija
American Physical Society (APS)ISSN Hae Julkaisufoorumista
2469-9985Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/184778998
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Euroopan komissioRahoitusohjelmat(t)
The content of the publication reflects only the author’s view. The funder is not responsible for any use that may be made of the information it contains.
Lisätietoja rahoituksesta
This research was sponsored in part by the Office of Nuclear Physics, U. S. Department of Energy under Award No. DE-FG02-96ER40983 (UTK) and No. DE-AC05-00OR22725 (ORNL), and by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Award No. DE-NA0002132. M.P.-S. acknowledges the funding support from the Polish National Science Center under Grant No. 2019/33/N/ST2/03023 and No. 2020/36/T/ST2/00547. A.K. was partially funded by the Polish National Science Center Grant No. 2020/39/B/ST2/02346. T.K. carried out this work under the auspices of the National Nuclear Security Administration of the U. S. Department of Energy at Los Alamos National Laboratory under Contract No. 89233218CNA000001. J.E.E. carried out this work under the auspices of the U. S. Department of Energy at Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. A.N.A., L.J.H-.B., D.S.J., R.D.P., and Zs.P. were supported by the UK Science and Technology Facilities Council (STFC). A.A. acknowledges partial support of the Ministerio de Ciencia e Innovacion Grant No. PID2019-104714GB-C21. A.M. acknowledges support from the Spanish Ministerio de Economía, Industria y Competitividad under Grant No. IJCI-2014-19172. N.W. acknowledges support from the German BMBF under Contract No. 05P18PKCIA and No. 05P21PKCI1 in Verbundprojekte 05P2018 and 05P2021. C.X.Y. acknowledges the National Natural Science Foundation of China under Grant No. 11775316 for support. This work was in part supported by the Research Foundation Flanders (FWO, Belgium), by GOA/2015/010 (BOF KU Leuven), the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office (BriX network P7/12). This work was supported in part by Spanish National Project No. RTI2018-098868-B-I00 and No. PID2019-104390GB-I00. The support by the European Union Horizon 2020 through ENSAR2 (Grant Agreement No. 654002) is acknowledged. This work was supported in part by the Romanian IFA project CERN/ISOLDE. ...Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Single-particle shell strengths near the doubly magic nucleus 56Ni and the 56Ni(p,γ)57Cu reaction rate in explosive astrophysical burning
Kahl, D.; Woods, P.J.; Poxon-Pearson, T.; Nunes, F.M.; Brown, B.A.; Schatz, H.; Baumann, T.; Bazin, D.; Belarge, J.A.; Bender, P.C.; Elman, B.; Estrade, A.; Gade, A.; Kankainen, A.; Lederer-Woods, C.; Lipschutz, S.; Longfellow, B.; Lonsdale, S.-J.; Lunderberg, E.; Montes, F.; Ong, W.J.; Perdikakis, G.; Pereira, J.; Sullivan, C.; Taverner, R.; Weisshaar, D.; Zegers, R. (Elsevier BV, 2019)Angle-integrated cross-section measurements of the 56Ni(d,n) and (d,p) stripping reactions have been performed to determine the single-particle strengths of low-lying excited states in the mirror nuclei pair 57Cu−57Ni ... -
Mass measurements towards doubly magic 78Ni : Hydrodynamics versus nuclear mass contribution in core-collapse supernovae
Giraud, S.; Canete, L.; Bastin, B.; Kankainen, A.; Fantina, A.F.; Gulminelli, F.; Ascher, P.; Eronen, T.; Girard, Alcindor V.; Jokinen, A.; Khanam, A.; Moore, I.D.; Nesterenko, D.A.; de Oliveira, Santos F.; Penttilä, H.; Petrone, C.; Pohjalainen, I.; De Roubin, A.; Rubchenya, V.; Vilen, M.; Äystö, J. (Elsevier BV, 2022)We report the first high-precision mass measurements of the neutron-rich nuclei 74,75Ni and the clearly identified ground state of 76Cu, along with a more precise mass-excess value of 78Cu, performed with the double Penning ... -
Detailed spectroscopy of doubly magic 132Sn
IDS Collaboration (American Physical Society, 2020)The structure of the doubly magic Sn-132(50)82 has been investigated at the ISOLDE facility at CERN, populated both by the beta(-) decay of In-132 and beta(-)-delayed neutron emission of In-133. The level scheme of Sn-13(2) ... -
Further Evidence for Shape Coexistence in 79Znm near Doubly Magic 78Ni
Nies, L.; Canete, L.; Dao, D. D.; Giraud, S.; Kankainen, A.; Lunney, D.; Nowacki, F.; Bastin, B.; Stryjczyk, M.; Ascher, P.; Blaum, K.; Cakirli, R. B.; Eronen, T.; Fischer, P.; Flayol, M.; Girard Alcindor, V.; Herlert, A.; Jokinen, A.; Khanam, A.; Köster, U.; Lange, D.; Moore, I. D.; Müller, M.; Mougeot, M.; Nesterenko, D. A.; Penttilä, H.; Petrone, C.; Pohjalainen, I.; de Roubin, A.; Rubchenya, V.; Schweiger Ch.; Schweikhard, L.; Vilen, M.; Äystö, J. (American Physical Society (APS), 2023)Isomers close to doubly magic 78 28Ni50 provide essential information on the shell evolution and shape coexistence near the Z ¼ 28 and N ¼ 50 double shell closure. We report the excitation energy measurement of the 1=2þ ... -
Superallowed α Decay to Doubly Magic 100Sn
Auranen, K.; Seweryniak, D.; Albers, M.; Ayangeakaa, A. D.; Bottoni, S.; Carpenter, M. P.; Chiara, C. J.; Copp, P.; David, H. M.; Doherty, D. T.; Harker, J.; Hoffman, C. R.; Janssens, R. V. F.; Khoo, T. L.; Kuvin, S. A.; Lauritsen, T.; Lotay, G.; Rogers, A. M.; Sethi, J.; Scholey, Catherine; Talwar, R.; Walters, W. B.; Woods, P. J.; Zhu, S. (American Physical Society, 2018)We report the first observation of the Xe108→Te104→Sn100 α-decay chain. The α emitters, Xe108 [Eα=4.4(2) MeV, T1/2=58-23+106 μs] and Te104 [Eα=4.9(2) MeV, T1/2<18 ns], decaying into doubly magic Sn100 were produced using ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.