Vertical projections in the Heisenberg group via cinematic functions and point-plate incidences
Fässler, K., & Orponen, T. (2023). Vertical projections in the Heisenberg group via cinematic functions and point-plate incidences. Advances in Mathematics, 431, Article 109248. https://doi.org/10.1016/j.aim.2023.109248
Published in
Advances in MathematicsDate
2023Copyright
© 2023 The Author(s). Published by Elsevier Inc.
Let {πe : H → We : e ∈ S1} be the family of vertical projections in the first Heisenberg group H. We prove that if K ⊂ H is a Borel set with Hausdorff dimension dimH K ∈ [0, 2] ∪ {3}, then dimH πe(K) ≥ dimH K for H1 almost every e ∈ S1. This was known earlier if dimH K ∈ [0, 1]. The proofs for dimH K ∈ [0, 2] and dimH K = 3 are based on different techniques. For dimH K ∈ [0, 2], we reduce matters to a Euclidean problem, and apply the method of cinematic functions due to Pramanik, Yang, and Zahl. To handle the case dimH K = 3, we introduce a point-line duality between horizontal lines and conical lines in R3. This allows us to transform the Heisenberg problem into a point plate incidence question in R3. To solve the latter, we apply a Kakeya inequality for plates in R3, due to Guth, Wang, and Zhang. This method also yields partial results for Borel sets K ⊂ H with dimH K ∈ (5/2, 3).
Publisher
ElsevierISSN Search the Publication Forum
0001-8708Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/184147837
Metadata
Show full item recordCollections
Related funder(s)
Research Council of FinlandFunding program(s)
Academy Research Fellow, AoFAdditional information about funding
K.F. is supported by the Academy of Finland via the project Singular integrals, harmonic functions, and boundary regularity in Heisenberg groups, grant No. 321696. T.O. is supported by the Academy of Finland via the project Incidences on Fractals, grant No. 321896.License
Related items
Showing items with similar title or keywords.
-
On the Hausdorff dimension of Furstenberg sets and orthogonal projections in the plane
Orponen, Tuomas; Shmerkin, Pablo (Duke University Press, 2023)Let 0 s 1 and 0 t 2. An .s;t/-Furstenberg set is a set K R2 with the following property: there exists a line set L of Hausdorff dimension dimH L t such that dimH.K \ `/ s for all ` 2 L. We prove that for s 2 .0;1/ and ... -
Dimension comparison and H-regular surfaces in Heisenberg groups
Arvila, Miro (2024)In this thesis we study a specific Carnot group which is the $n$-th Heisenberg group $\mathbb{H}^n = (\mathbb{R}^{2n+1}, \ast)$. Carnot groups are simply connected nilpotent Lie groups whose Lie algebra admits a stratification. ... -
On the dimension of Kakeya sets in the first Heisenberg group
Liu, Jiayin (American Mathematical Society (AMS), 2022)We define Kakeya sets in the Heisenberg group and show that the Heisenberg Hausdorff dimension of Kakeya sets in the first Heisenberg group is at least 3. This lower bound is sharp since, under our definition, the {xoy}-plane ... -
On the dimension of visible parts
Orponen, Tuomas (European Mathematical Society - EMS - Publishing House GmbH, 2023)I prove that the visible parts of a compact set in Rn, n≥2, have Hausdorff dimension at most n − 1/50n from almost every direction. -
On the Hausdorff dimension of radial slices
Orponen, Tuomas (Suomen matemaattinen yhdistys, 2024)Let t∈(1,2), and let B⊂R2 be a Borel set with dimHB>t. I show that H1({e∈S1:dimH(B∩ℓx,e)≥t−1})>0 for all x∈R2∖E, where dimHE≤2−t. This is the sharp bound for dimHE. The main technical tool is an incidence inequality of the ...