Inorganic Anion-Mediated Supramolecular Entities of 4-Amino-3,5-Bis(4-Pyridyl)-1,2,4-Triazole Salts Assisted by the Interplay of Noncovalent Interactions

Abstract
The development of new families of synthetic molecular systems projecting neutral, bi-, or multi-H-bonding donor units is significant to acquire the desired selectivity within the fascinating area of anion recognition. Here, we illustrate the reaction between a neutral 4-amino-3,5-bis(4-pyridyl)-1,2,4-triazole ligand (L) with acidic solutions containing either chloride, bromide, nitrate, phosphate, iodide, sulfate, hexafluorosilicate, fluoride, tetrafluoroborate or perchlorate anions, yielding 16 new anion-mediated supramolecular entities, H2LCl2 (1), H2LBr2 (2), H2L(NO3)2 (3), HL(H2PO4) (4), H2L(H2PO4)2 (5), [H2L]2I4 (6), H2L(NO3)2 (7), H2L(SO4)·H2O (8), H2LSiF6 (9), H2LSiF6·2H2O (10), H2L(HF2)2 (11), H3LI3 (12), H3L(BF4)3 (13), H3L(ClO4)3 (14), H3L(ClO4)3·2H2O (15), and H3LH3O(SiF6)2·2H2O (16), thoroughly examined by elemental analyses, Fourier transform-attenuated total reflectance-infrared (FT-ATR-IR), thermal analysis, powder diffraction, and single-crystal X-ray diffraction. We identified the propensity of H2PO4– into a cyclic hexameric cluster (H2PO4–)6 stabilized by a bent ligand L via a combination of functionalities such as an amino group, pyridyl terminals, and a triazolyl core. Additionally, we also found the anion–water clusters ranging from a cyclic tetramer [(SO4)2–(H2O)2]4– and an octameric cluster [(SiF6)4–(H2O)4]∞8– to an acyclic tetramer [(ClO4–)2(H2O)2]. As shown by the study, subtle modulation in the crystallization environment offers the possibility to yield entirely distinctive forms of molecular salts comprising both anhydrous and a few hydrates with different protonated numbers (mono-, di- or triprotonated). A systematic study indicates that the molecular salts obtained from different anions construct diverse supramolecular extended architectures (e.g., bricklayer, columns, zig-zag, stair-steps, wave-like, helical, double chain, and criss-cross orientation) self-assembled by a combination of noncovalent interactions, constituting distinct H-bonded geometry patterns, essentially depending on the molecular conformation of the bent ligand and the type of the anion utilized (linear, spherical, triangular, tetrahedral, and octahedral) in the preparation of salts.
Main Authors
Format
Articles Research article
Published
2023
Series
Subjects
Publication in research information system
Publisher
American Chemical Society (ACS)
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-202307124519Käytä tätä linkitykseen.
Review status
Peer reviewed
ISSN
1528-7483
DOI
https://doi.org/10.1021/acs.cgd.3c00393
Language
English
Published in
Crystal Growth and Design
Citation
  • Mahajan, S., Marttinen, A., Forsblom, S., & Lahtinen, M. (2023). Inorganic Anion-Mediated Supramolecular Entities of 4-Amino-3,5-Bis(4-Pyridyl)-1,2,4-Triazole Salts Assisted by the Interplay of Noncovalent Interactions. Crystal Growth and Design, 23(7), 5144-5162. https://doi.org/10.1021/acs.cgd.3c00393
License
CC BY 4.0Open Access
Funder(s)
Research Council of Finland
Funding program(s)
Academy Programme, AoF
Akatemiaohjelma, SA
Research Council of Finland
Additional information about funding
This study was financially supported by the Academy of Finland (Decision Number 329314) and the University of Jyväskylä.
Copyright© 2023 The Authors. Published by American Chemical Society

Share