Show simple item record

dc.contributor.authorMahini, Reza
dc.contributor.authorLi, Fan
dc.contributor.authorZarei, Mahdi
dc.contributor.authorNandi, Asoke K.
dc.contributor.authorHämäläinen, Timo
dc.contributor.authorCong, Fengyu
dc.date.accessioned2023-07-07T11:40:46Z
dc.date.available2023-07-07T11:40:46Z
dc.date.issued2023
dc.identifier.citationMahini, R., Li, F., Zarei, M., Nandi, A. K., Hämäläinen, T., & Cong, F. (2023). Ensemble deep clustering analysis for time window determination of event-related potentials. <i>Biomedical Signal Processing and Control</i>, <i>86, B</i>, Article 105202. <a href="https://doi.org/10.1016/j.bspc.2023.105202" target="_blank">https://doi.org/10.1016/j.bspc.2023.105202</a>
dc.identifier.otherCONVID_183845675
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/88313
dc.description.abstractObjective Cluster analysis of spatio-temporal event-related potential (ERP) data is a promising tool for exploring the measurement time window of ERPs. However, even after preprocessing, the remaining noise can result in uncertain cluster maps followed by unreliable time windows while clustering via conventional clustering methods. Methods We designed an ensemble deep clustering pipeline to determine a reliable time window for the ERP of interest from temporal concatenated grand average ERP data. The proposed pipeline includes semi-supervised deep clustering methods initialized by consensus clustering and unsupervised deep clustering methods with end-to-end architectures. Ensemble clustering from those deep clusterings was used by the designed adaptive time window determination to estimate the time window. Results After applying simulated and real ERP data, our method successfully obtained the time window for identifying the P3 components (as the interest of both ERP studies) while additional noise (e.g., adding 20 dB to −5 dB white Gaussian noise) was added to the prepared data. Conclusion Compared to the state-of-the-art clustering methods, a superior clustering performance was yielded from both ERP data. Furthermore, more stable and precise time windows were elicited as the noise increased. Significance Our study provides a complementary understanding of identifying the cognitive process using deep clustering analysis to the existing studies. Our finding suggests that deep clustering can be used to identify the ERP of interest when the data is imperfect after preprocessing.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesBiomedical Signal Processing and Control
dc.rightsCC BY 4.0
dc.subject.otherERP
dc.subject.otherevent-related potentials
dc.subject.othertime window
dc.subject.otherdeep clustering
dc.subject.otherensemble learning
dc.subject.otherconsensus clustering
dc.subject.otherERP microstates
dc.titleEnsemble deep clustering analysis for time window determination of event-related potentials
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202307074440
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineTekniikkafi
dc.contributor.oppiaineSecure Communications Engineering and Signal Processingfi
dc.contributor.oppiaineMathematical Information Technologyen
dc.contributor.oppiaineEngineeringen
dc.contributor.oppiaineSecure Communications Engineering and Signal Processingen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1746-8094
dc.relation.volume86, B
dc.type.versionpublishedVersion
dc.rights.copyright© 2023 the Authors
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysokognitiiviset prosessit
dc.subject.ysoanalyysi
dc.subject.ysotutkimusmenetelmät
dc.subject.ysoklusterit
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p5283
jyx.subject.urihttp://www.yso.fi/onto/yso/p6851
jyx.subject.urihttp://www.yso.fi/onto/yso/p415
jyx.subject.urihttp://www.yso.fi/onto/yso/p18755
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1016/j.bspc.2023.105202
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0