Show simple item record

dc.contributor.authorDomínguez-Flores, Fabiola
dc.contributor.authorMelander, Marko M.
dc.date.accessioned2023-07-03T10:00:38Z
dc.date.available2023-07-03T10:00:38Z
dc.date.issued2023
dc.identifier.citationDomínguez-Flores, F., & Melander, M. M. (2023). Approximating constant potential DFT with canonical DFT and electrostatic corrections. <i>Journal of Chemical Physics</i>, <i>158</i>(14), Article 144701. <a href="https://doi.org/10.1063/5.0138197" target="_blank">https://doi.org/10.1063/5.0138197</a>
dc.identifier.otherCONVID_182707235
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/88186
dc.description.abstractThe complexity of electrochemical interfaces has led to the development of several approximate density functional theory (DFT)-based schemes to study reaction thermodynamics and kinetics as a function of electrode potential. While fixed electrode potential conditions can be simulated with grand canonical ensemble DFT (GCE-DFT), various electrostatic corrections on canonical, constant charge DFT are often applied instead. In this work, we present a systematic derivation and analysis of the different electrostatic corrections on canonical DFT to understand their physical validity, implicit assumptions, and scope of applicability. Our work highlights the need to carefully address the suitability of a given model for the problem under study, especially if physical or chemical insight in addition to reaction energetics is sought. In particular, we analytically show that the different corrections cannot differentiate between electrostatic interactions and covalent or charge-transfer interactions. By numerically testing different models for CO2 adsorption on a single-atom catalyst as a function of the electrode potential, we further show that computed capacitances, dipole moments, and the obtained physical insight depend sensitively on the chosen approximation. These features limit the scope, generality, and physical insight of these corrective schemes despite their proven practicality for specific systems and energetics. Finally, we suggest guidelines for choosing different electrostatic corrections and propose the use of conceptual DFT to develop more general approximations for electrochemical interfaces and reactions using canonical DFT.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAIP Publishing
dc.relation.ispartofseriesJournal of Chemical Physics
dc.rightsIn Copyright
dc.subject.otherthermodynamic functions
dc.subject.othergraphene
dc.subject.otherelectrolytes
dc.subject.otherelectrostatics
dc.subject.otherelectrochemical potential
dc.subject.otherstatistical thermodynamics
dc.subject.otherelectrochemistry
dc.subject.otherdensity functional theory
dc.subject.otheradsorption
dc.titleApproximating constant potential DFT with canonical DFT and electrostatic corrections
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202307034329
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.oppiaineFysikaalinen kemiafi
dc.contributor.oppiaineResurssiviisausyhteisöfi
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiainePhysical Chemistryen
dc.contributor.oppiaineSchool of Resource Wisdomen
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0021-9606
dc.relation.numberinseries14
dc.relation.volume158
dc.type.versionpublishedVersion
dc.rights.copyright© 2023 Author(s). Published under an exclusive license by AIP Publishing.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber338228
dc.subject.ysosähköstatiikka
dc.subject.ysosähkökemia
dc.subject.ysoadsorptio
dc.subject.ysoelektrolyytit
dc.subject.ysografeeni
dc.subject.ysoelektrodit
dc.subject.ysotiheysfunktionaaliteoria
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p13100
jyx.subject.urihttp://www.yso.fi/onto/yso/p8093
jyx.subject.urihttp://www.yso.fi/onto/yso/p13395
jyx.subject.urihttp://www.yso.fi/onto/yso/p8094
jyx.subject.urihttp://www.yso.fi/onto/yso/p24483
jyx.subject.urihttp://www.yso.fi/onto/yso/p14077
jyx.subject.urihttp://www.yso.fi/onto/yso/p28852
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1063/5.0138197
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Research Fellow, AoFen
jyx.fundingprogramAkatemiatutkija, SAfi
jyx.fundinginformationThe authors acknowledge funding by the Academy of Finland (CompEL Project No. 338228).
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright