Evolution and decay of an Alice ring in a spinor Bose-Einstein condensate
Kivioja, M., Zamora-Zamora, R., Blinova, A., Mönkölä, S., Rossi, T., & Möttönen, M. (2023). Evolution and decay of an Alice ring in a spinor Bose-Einstein condensate. Physical Review Research, 5(2), Article 023104. https://doi.org/10.1103/PhysRevResearch.5.023104
Published in
Physical Review ResearchAuthors
Date
2023Discipline
TutkintokoulutusComputing, Information Technology and MathematicsTietotekniikkaLaskennallinen tiedeDegree EducationComputing, Information Technology and MathematicsMathematical Information TechnologyComputational ScienceCopyright
© 2023 American Physical Society (APS)
We use first-principles-derived numerical simulations to investigate the long-time evolution of a half-quantum vortex ring, an Alice ring, arising from the decay dynamics of an isolated monopole in the polar phase of a dilute spin-1 Bose-Einstein condensate. In particular, we study the lifetime and decay characteristics of the Alice ring under different experimentally relevant conditions. We observe that, in a 87Rb condensate with a homogeneous external magnetic field, a well-centered Alice ring may survive for over 160 ms, and that during its lifetime it can contract back into a monopole, which again converts into an Alice ring. Interestingly, we notice an additional Alice ring, with an opposite topological charge, to emerge during the decay dynamics within the condensate, leading to the coexistence of two Alice rings in the same cloud. Shortly after this coexistence, the original Alice ring breaks into a line-like defect referred to as an Alice string. We find that the location of the initial isolated monopole correlates with the winding direction of the scalar phase in the produced vortex ring, a phenomenon which we utilize to create two Alice rings with opposite charges and opposite winding directions. Such created Alice ring and anti-Alice ring naturally annihilate each other in the subsequent evolution.
...


Publisher
American Physical Society (APS)ISSN Search the Publication Forum
2643-1564Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/183649535
Metadata
Show full item recordCollections
Additional information about funding
We acknowledge financial support from the Academy of Finland through its Centre of Excellence in Quantum Technology (Grant No. 336810) and computational resources from CSC - IT Center for Science, Finland.License
Related items
Showing items with similar title or keywords.
-
Numerical simulation of free dissipative open quantum system and establishment of a formula for π
Agasti, Souvik (American Institute of Physics, 2020)We transform the system/reservoir coupling model into a one-dimensional semi-infinite discrete chain with nearest neighbor interaction through a unitary transformation, and, simulate the dynamics of free dissipative open ... -
Weak localization at arbitrary disorder strength in systems with generic spin-dependent fields
Hijano, Alberto; Ilić, Stefan; Bergeret, F. Sebastián (American Physical Society, 2024)We present a theory of weak localization (WL) in the presence of generic spin-dependent fields, including any type of spin-orbit coupling, Zeeman fields, and nonhomogeneous magnetic textures. We go beyond the usual diffusive ... -
Numerical study on the limit of quasi-static approximation for plasmonic nanosphere
Dutta, Arpan; Tiainen, Ville; Toppari, Jussi (American Institute of Physics, 2020)Plasmonic nanospheres are often employed as resonant substrates in many nanophotonic applications, like in enhanced spectroscopy, near-field microscopy, photovoltaics, and sensing. Accurate calculation and tuning of optical ... -
SERS activity of photoreduced silver chloride crystals
Dutta, Arpan; Matikainen, Antti; Andoh, Sampson; Nuutinen, Tarmo (American Institute of Physics, 2020)Metal nanoparticles are widely acclaimed as plasmonic substrates for surface-enhanced Raman spectroscopy (SERS) due to their unique particle plasmon resonances at visible and near infrared regions. Silver nanoparticles are ... -
Three-dimensional skyrmions in spin-2 Bose–Einstein condensates
Tiurev, Konstantin; Ollikainen, Tuomas; Kuopanportti, Pekko; Nakahara, Mikio; Hall, David S.; Möttönen, Mikko (IOP Publishing; Deutsche Physikalische Gesellschaft, 2018)We introduce topologically stable three-dimensional skyrmions in the cyclic and biaxial nematic phases of a spin-2 Bose–Einstein condensate. These skyrmions exhibit exceptionally high mapping degrees resulting from the ...