Natural language generation methods on small datasets
Tekijät
Päivämäärä
2023Pääsyrajoitukset
Tekijä ei ole antanut lupaa avoimeen julkaisuun, joten aineisto on luettavissa vain Jyväskylän yliopiston kirjaston arkistotyösemalta. Ks. https://kirjasto.jyu.fi/kokoelmat/arkistotyoasema..
Tekijänoikeudet
© The Author(s)
Tämän Pro gradu -tutkielman tavoitteena on tutkia takaisinkytkettyjen neuroverkkojen (RNN) käyttöä luonnollisen kielen generointiin pienillä tietoaineistoilla. Pieni tietoaineisto luodaan keräämällä tekstiä laulun sanoista, ja kaksi mallia, sanatason RNN ja merkkitason RNN, rakennetaan luonnollisen kielen generoimista varten. Mallien suorituskykyä verrataan generoidun tekstin laadun ja tulosteen monimuotoisuuden perusteella ja tarkastellaan eri hyperparametrien vaikutusta mallien suorituskykyyn. Havaitaan, että sanatason RNN luo koherentimpaa tekstiä kuin merkkitason RNN malli. This thesis studies the use of recurrent neural networks (RNNs) for natural language generation on small datasets. A small dataset is created by collecting text on song lyrics, and two models, a word-level RNN and a character-level RNN, are built for natural language generation. The performance of the models is compared based on the quality of generated text and the diversity of the output, and the impact of different hyperparameters on the models' performance is explored. Word-level model is found to outperform the character-level model in generating coherent sentences.
Asiasanat
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Pro gradu -tutkielmat [29740]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Process‐Informed Neural Networks : A Hybrid Modelling Approach to Improve Predictive Performance and Inference of Neural Networks in Ecology and Beyond
Wesselkamp, Marieke; Moser, Niklas; Kalweit, Maria; Boedecker, Joschka; Dormann, Carsten F. (Wiley, 2024)Despite deep learning being state of the art for data-driven model predictions, its application in ecology is currently subject to two important constraints: (i) deep-learning methods are powerful in data-rich regimes, but ... -
Generating Hyperspectral Skin Cancer Imagery using Generative Adversarial Neural Network
Annala, Leevi; Neittaanmäki, Noora; Paoli, John; Zaar, Oscar; Pölönen, Ilkka (IEEE, 2020)In this study we develop a proof of concept of using generative adversarial neural networks in hyperspectral skin cancer imagery production. Generative adversarial neural network is a neural network, where two neural ... -
Automatic Content Analysis of Computer-Supported Collaborative Inquiry-Based Learning Using Deep Networks and Attention Mechanisms
Uribe, Pablo; Jiménez, Abelino; Araya, Roberto; Lämsä, Joni; Hämäläinen, Raija; Viiri, Jouni (Springer International Publishing, 2020)Computer-supported collaborative inquiry-based learning (CSCIL) represents a form of active learning in which students jointly pose questions and investigate them in technology-enhanced settings. Scaffolds can enhance CSCIL ... -
Discovering Business Processes from Unstructured Text
Pietikäinen, Sampo (2020)Asiakirjojen käsittely manuaalisesti kuluttaa paljon tietotyöntekijän resursseja. Tämä koskee myös liiketoimintaprossien johtamisen asiantuntijoita, joiden työ voi vaatia useiden liiketoimintaprosessien kuvausten lukemista. ... -
Taxonomy-Informed Neural Networks for Smart Manufacturing
Terziyan, Vagan; Vitko, Oleksandra (Elsevier, 2024)A neural network (NN) is known to be an efficient and learnable tool supporting decision-making processes particularly in Industry 4.0. The majority of NNs are data-driven and, therefore, depend on training data quantity ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.