Incorporating Preference Information Interactively in NSGA-III by the Adaptation of Reference Vectors
Lárraga, G., Saini, B. S., & Miettinen, K. (2023). Incorporating Preference Information Interactively in NSGA-III by the Adaptation of Reference Vectors. In M. Emmerich, A. Deutz, H. Wang, A. V. Kononova, B. Naujoks, K. Li, K. Miettinen, & I. Yevseyeva (Eds.), Evolutionary Multi-Criterion Optimization : 12th International Conference, EMO 2023, Leiden, The Netherlands, March 20–24, 2023, Proceedings (pp. 578-592). Springer. Lecture Notes in Computer Science, 13970. https://doi.org/10.1007/978-3-031-27250-9_41
Julkaistu sarjassa
Lecture Notes in Computer ScienceToimittajat
Li, Ke |
Päivämäärä
2023Oppiaine
Laskennallinen tiedeMultiobjective Optimization GroupPäätöksen teko monitavoitteisestiComputational ScienceMultiobjective Optimization GroupDecision analytics utilizing causal models and multiobjective optimizationTekijänoikeudet
© 2023 the Authors
Real-world multiobjective optimization problems involve decision makers interested in a subset of solutions that meet their preferences. Decomposition-based multiobjective evolutionary algorithms (or MOEAs) have gained the research community’s attention because of their good performance in problems with many objectives. Some efforts have been made to propose variants of these methods that incorporate the decision maker’s preferences, directing the search toward regions of interest. Typically, such variants adapt the reference vectors according to the decision maker’s preferences. However, most of them can consider a single type of preference, the most common being reference points. Interactive MOEAs aim to let decision-makers provide preference information progressively, allowing them to learn about the trade-offs between objectives in each iteration. In such methods, decision makers can provide preferences in multiple ways, and it is desirable to allow them to select the type of preference for each iteration according to their knowledge. This article compares three interactive versions of NSGA-III utilizing multiple types of preferences. The first version incorporates a mechanism that adapts the reference vectors differently according to the type of preferences. The other two versions convert the preferences from the type selected by the decision maker to reference points, which are then utilized in two different reference vector adaptation techniques that have been used in a priori MOEAs. According to the results, we identify the advantages and drawbacks of the compared methods.
...
Julkaisija
SpringerEmojulkaisun ISBN
978-3-031-27249-3Konferenssi
International Conference on Evolutionary Multi-Criterion OptimizationKuuluu julkaisuun
Evolutionary Multi-Criterion Optimization : 12th International Conference, EMO 2023, Leiden, The Netherlands, March 20–24, 2023, ProceedingsISSN Hae Julkaisufoorumista
0302-9743Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/178489266
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SALisätietoja rahoituksesta
This research was supported by the Academy of Finland (grant number 322221). The research is related to the thematic research area DEMO (Decision Analytics utilizing Causal Models and Multiobjective Optimization, jyu.fi/demo) of the University of Jyväskylä.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Interactive evolutionary multiobjective optimization with modular physical user interface
Mazumdar, Atanu; Otayagich, Stefan; Miettinen, Kaisa (ACM, 2022)Incorporating the preferences of a domain expert, a decision-maker (DM), in solving multiobjective optimization problems increased in popularity in recent years. The DM can choose to use different types of preferences ... -
A Performance Indicator for Interactive Evolutionary Multiobjective Optimization Methods
Aghaei Pour, Pouya; Bandaru, Sunith; Afsar, Bekir; Emmerich, Michael; Miettinen, Kaisa (IEEE, 2024)In recent years, interactive evolutionary multiobjective optimization methods have been getting more and more attention. In these methods, a decision maker, who is a domain expert, is iteratively involved in the solution ... -
Comparing interactive evolutionary multiobjective optimization methods with an artificial decision maker
Afsar, Bekir; Ruiz, Ana B.; Miettinen, Kaisa (Springer Science+Business Media, 2023)Solving multiobjective optimization problems with interactive methods enables a decision maker with domain expertise to direct the search for the most preferred trade-offs with preference information and learn about the ... -
Desirable properties of performance indicators for assessing interactive evolutionary multiobjective optimization methods
Aghaei Pour, Pouya; Bandaru, Sunith; Afsar, Bekir; Miettinen, Kaisa (ACM, 2022)Interactive methods support decision makers in finding the most preferred solution in multiobjective optimization problems. They iteratively incorporate the decision maker's preference information to find the best balance ... -
Component-based thinking in designing interactive multiobjective evolutionary methods
Lárraga, Giomara; Miettinen, Kaisa (ACM, 2023)Multiobjective optimization problems have multiple conflicting objective functions to be optimized simultaneously. They have many Pareto optimal solutions representing different trade-offs, and a decision-maker needs to ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.