Incorporating Preference Information Interactively in NSGA-III by the Adaptation of Reference Vectors
Lárraga, G., Saini, B. S., & Miettinen, K. (2023). Incorporating Preference Information Interactively in NSGA-III by the Adaptation of Reference Vectors. In M. Emmerich, A. Deutz, H. Wang, A. V. Kononova, B. Naujoks, K. Li, K. Miettinen, & I. Yevseyeva (Eds.), Evolutionary Multi-Criterion Optimization : 12th International Conference, EMO 2023, Leiden, The Netherlands, March 20–24, 2023, Proceedings (pp. 578-592). Springer. Lecture Notes in Computer Science, 13970. https://doi.org/10.1007/978-3-031-27250-9_41
Published in
Lecture Notes in Computer ScienceEditors
Li, Ke |
Date
2023Discipline
Laskennallinen tiedeMultiobjective Optimization GroupPäätöksen teko monitavoitteisestiComputational ScienceMultiobjective Optimization GroupDecision analytics utilizing causal models and multiobjective optimizationCopyright
© 2023 the Authors
Real-world multiobjective optimization problems involve decision makers interested in a subset of solutions that meet their preferences. Decomposition-based multiobjective evolutionary algorithms (or MOEAs) have gained the research community’s attention because of their good performance in problems with many objectives. Some efforts have been made to propose variants of these methods that incorporate the decision maker’s preferences, directing the search toward regions of interest. Typically, such variants adapt the reference vectors according to the decision maker’s preferences. However, most of them can consider a single type of preference, the most common being reference points. Interactive MOEAs aim to let decision-makers provide preference information progressively, allowing them to learn about the trade-offs between objectives in each iteration. In such methods, decision makers can provide preferences in multiple ways, and it is desirable to allow them to select the type of preference for each iteration according to their knowledge. This article compares three interactive versions of NSGA-III utilizing multiple types of preferences. The first version incorporates a mechanism that adapts the reference vectors differently according to the type of preferences. The other two versions convert the preferences from the type selected by the decision maker to reference points, which are then utilized in two different reference vector adaptation techniques that have been used in a priori MOEAs. According to the results, we identify the advantages and drawbacks of the compared methods.
...
Publisher
SpringerParent publication ISBN
978-3-031-27249-3Conference
International Conference on Evolutionary Multi-Criterion OptimizationIs part of publication
Evolutionary Multi-Criterion Optimization : 12th International Conference, EMO 2023, Leiden, The Netherlands, March 20–24, 2023, ProceedingsISSN Search the Publication Forum
0302-9743Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/178489266
Metadata
Show full item recordCollections
Related funder(s)
Research Council of FinlandFunding program(s)
Academy Project, AoFAdditional information about funding
This research was supported by the Academy of Finland (grant number 322221). The research is related to the thematic research area DEMO (Decision Analytics utilizing Causal Models and Multiobjective Optimization, jyu.fi/demo) of the University of Jyväskylä.License
Related items
Showing items with similar title or keywords.
-
A Performance Indicator for Interactive Evolutionary Multiobjective Optimization Methods
Aghaei Pour, Pouya; Bandaru, Sunith; Afsar, Bekir; Emmerich, Michael; Miettinen, Kaisa (IEEE, 2024)In recent years, interactive evolutionary multiobjective optimization methods have been getting more and more attention. In these methods, a decision maker, who is a domain expert, is iteratively involved in the solution ... -
Interactive evolutionary multiobjective optimization with modular physical user interface
Mazumdar, Atanu; Otayagich, Stefan; Miettinen, Kaisa (ACM, 2022)Incorporating the preferences of a domain expert, a decision-maker (DM), in solving multiobjective optimization problems increased in popularity in recent years. The DM can choose to use different types of preferences ... -
Comparing interactive evolutionary multiobjective optimization methods with an artificial decision maker
Afsar, Bekir; Ruiz, Ana B.; Miettinen, Kaisa (Springer Science+Business Media, 2023)Solving multiobjective optimization problems with interactive methods enables a decision maker with domain expertise to direct the search for the most preferred trade-offs with preference information and learn about the ... -
A New Paradigm in Interactive Evolutionary Multiobjective Optimization
Saini, Bhupinder Singh; Hakanen, Jussi; Miettinen, Kaisa (Springer, 2020)Over the years, scalarization functions have been used to solve multiobjective optimization problems by converting them to one or more single objective optimization problem(s). This study proposes a novel idea of solving ... -
Desirable properties of performance indicators for assessing interactive evolutionary multiobjective optimization methods
Aghaei Pour, Pouya; Bandaru, Sunith; Afsar, Bekir; Miettinen, Kaisa (ACM, 2022)Interactive methods support decision makers in finding the most preferred solution in multiobjective optimization problems. They iteratively incorporate the decision maker's preference information to find the best balance ...