Higher order approximations in discrete exterior calculus
The theory of discrete exterior calculus provides tools for imitating exterior calculus
in finite-dimensional cochain spaces, inducing numerical methods for problems
presented in terms of differential forms. Methods based on discrete exterior
calculus share the property that the coboundary operator discretises the exterior
derivative exactly, in the sense that Stokes’ theorem is automatically preserved in
the finite-dimensional setting. Another benefit is that the dependence on metric
is identifiable and restricts to the Hodge star operator and its discretisation. Although
the importance of the discrete Hodge operator has been acknowledged,
extending the framework of discrete exterior calculus to higher order methods
has previously been an open problem. In this thesis, we extend the theory to
accommodate higher order approximations. The key point is to create the mesh
such that cochains can be interpolated with higher order interpolants. This can
be accomplished with our systematic interpolation framework on simplicial and
cubical meshes. We divide the cells of the mesh into smaller cells that can be used
to define the interpolants and their degrees of freedom. When a mesh containing
these small cells is used to apply discrete exterior calculus, cochains can be
interpolated with higher order accuracy. This interpolation framework admits a
systematic implementation covering arbitrary orders with the same code. It can
also be used to define higher order discrete Hodge operators in a natural manner.
These operators are, in a sense, exact for all elements in the finite-dimensional
space of interpolants. The tools developed in this work enable higher order
schemes based on discrete exterior calculus; we demonstrate this with elliptic
and hyperbolic boundary value problems. Convergence properties are studied
both theoretically and through numerical examples.
...
Diskreetti ulkoinen laskenta (engl. discrete exterior calculus, DEC) mahdollistaa
differentiaalimuotojen approksimoinnin numeerisiin menetelmiin soveltuvissa
äärellisulotteisissa avaruuksissa. DEC-pohjaisten menetelmien etuna on ulkoderivaatan
diskreetti vastine, joka perustuu Stokesin lauseeseen eikä aiheuta lainkaan
virhettä. Lisäksi metrisen tensorin valinnasta riippuvat ja riippumattomat
diskretoinnin osat ovat selvästi eriteltävissä. Vaikka oleellisten operaattorien merkitys
on ymmärretty, diskreettiin ulkoiseen laskentaan pohjautuvat menetelmät
on aiemmin mielletty alimman asteen menetelmiksi. Tässä väitöskirjassa teoriaa
kehitetään kattamaan korkeamman asteen approksimaatioita. Keskeisintä on
verkon muodostaminen korkeamman asteen interpolointiin soveltuvalla tavalla.
Tätä varten esitetään systemaattinen strategia simplekseillä ja hyperkuutioilla.
Solut jaetaan pienempiin soluihin, joita voidaan käyttää interpolanttien ja näiden
vapausasteiden määrittelemiseen. Kun verkko sisältää nämä pienemmät solut,
korkeamman asteen interpoloinnista tulee mahdollista. Interpolointistrategialle
saadaan systemaattinen toteutus, joka kattaa kaikenasteiset approksimaatiot samalla
koodilla. Lisäksi se tarjoaa luonnollisen tavan johtaa diskreettejä Hodgeoperaattoreja.
Väitöstutkimuksessa kehitettyjen työkalujen ansiosta reuna-arvotehtäville
saadaan DEC-pohjaisia korkeamman asteen menetelmiä; tätä demonstroidaan
elliptisten ja hyperbolisten tehtävien yhteydessä. Menetelmien suppenemista
tarkastellaan sekä teoreettisesti että numeerisin testiesimerkein.
...
Publisher
Jyväskylän yliopistoISBN
978-951-39-9613-0ISSN Search the Publication Forum
2489-9003Contains publications
- Artikkeli I: Lohi, J., & Kettunen, L. (2021). Whitney forms and their extensions. Journal of Computational and Applied Mathematics, 393, Article 113520. DOI: 10.1016/j.cam.2021.113520
- Artikkeli II: Lohi, J. (2022). Systematic implementation of higher order Whitney forms in methods based on discrete exterior calculus. Numerical Algorithms, 91(3), 1261-1285. DOI: 10.1007/s11075-022-01301-2
- Artikkeli III: Lohi, J. New degrees of freedom for differential forms on cubical meshes. Advances in Computational Mathematics. Accepted for publication.
- Artikkeli IV: Lohi, J., Kettunen, L., and Rossi, T. Higher order methods based on discrete exterior calculus. Submitted.
Metadata
Show full item recordCollections
- JYU Dissertations [883]
- Väitöskirjat [3619]
License
Related items
Showing items with similar title or keywords.
-
Systematic implementation of higher order Whitney forms in methods based on discrete exterior calculus
Lohi, Jonni (Springer, 2022)We present a systematic way to implement higher order Whitney forms in numerical methods based on discrete exterior calculus. Given a simplicial mesh, we first refine the mesh into smaller simplices which can be used to ... -
Discrete exterior calculus and higher order Whitney forms
Lohi, Jonni (2019)Partial differential equations describing various phenomena have a natural expression in terms of differential forms. This thesis discusses higher order Whitney forms as approximations for differential forms. We present ... -
Comparison of finite element and discrete exterior calculus in computation of time-harmonic wave propagation with controllability
Saksa, Tytti (Elsevier, 2025)This paper discusses computation of time-harmonic wave problems using a mixed formulation and the controllability method introduced by Roland Glowinski. As an example, a scattering problem (in an exterior domain) is ... -
(2+1)-dimensional discrete exterior discretization of a general wave model in Minkowski spacetime
Mönkölä, Sanna; Räbinä, Jukka; Saksa, Tytti; Rossi, Tuomo (Elsevier, 2025)We present a differential geometry-based model for linear wave equations in -dimensional spacetime. This model encompasses acoustic, elastic, and electromagnetic waves and is also applicable in quantum mechanical simulations. ... -
On a numerical solution of the Maxwell equations by discrete exterior calculus
Räbinä, Jukka (University of Jyväskylä, 2014)