Näytä suppeat kuvailutiedot

dc.contributor.authorLiefooghe, Arnaud
dc.contributor.authorVerel, Sébastien
dc.contributor.authorChugh, Tinkle
dc.contributor.authorFieldsend, Jonathan
dc.contributor.authorAllmendinger, Richard
dc.contributor.authorMiettinen, Kaisa
dc.contributor.editorEmmerich, Michael
dc.contributor.editorDeutz, André
dc.contributor.editorWang, Hao
dc.contributor.editorKononova, Anna V.
dc.contributor.editorNaujoks, Boris
dc.contributor.editorLi, Ke
dc.contributor.editorMiettinen, Kaisa
dc.contributor.editorYevseyeva, Iryna
dc.date.accessioned2023-05-22T04:42:35Z
dc.date.available2023-05-22T04:42:35Z
dc.date.issued2023
dc.identifier.citationLiefooghe, A., Verel, S., Chugh, T., Fieldsend, J., Allmendinger, R., & Miettinen, K. (2023). Feature-Based Benchmarking of Distance-Based Multi/Many-objective Optimisation Problems : A Machine Learning Perspective. In M. Emmerich, A. Deutz, H. Wang, A. V. Kononova, B. Naujoks, K. Li, K. Miettinen, & I. Yevseyeva (Eds.), <i>Evolutionary Multi-Criterion Optimization : 12th International Conference, EMO 2023, Leiden, The Netherlands, March 20–24, 2023, Proceedings</i> (pp. 260-273). Springer. Lecture Notes in Computer Science, 13970. <a href="https://doi.org/10.1007/978-3-031-27250-9_19" target="_blank">https://doi.org/10.1007/978-3-031-27250-9_19</a>
dc.identifier.otherCONVID_178488033
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/87040
dc.description.abstractWe consider the application of machine learning techniques to gain insights into the effect of problem features on algorithm performance, and to automate the task of algorithm selection for distance-based multi- and many-objective optimisation problems. This is the most extensive benchmark study of such problems to date. The problem features can be set directly by the problem generator, and include e.g. the number of variables, objectives, local fronts, and disconnected Pareto sets. Using 945 problem configurations (leading to 28350 instances) of varying complexity, we find that the problem features and the available optimisation budget (i) affect the considered algorithms (NSGA-II, IBEA, MOEA/D, and random search) in different ways and that (ii) it is possible to recommend a relevant algorithm based on problem features.en
dc.format.extent636
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofEvolutionary Multi-Criterion Optimization : 12th International Conference, EMO 2023, Leiden, The Netherlands, March 20–24, 2023, Proceedings
dc.relation.ispartofseriesLecture Notes in Computer Science
dc.rightsIn Copyright
dc.subject.othermulti/many-objective distance problems
dc.subject.otherfeature-based performance prediction
dc.subject.otherautomated algorithm selection
dc.titleFeature-Based Benchmarking of Distance-Based Multi/Many-objective Optimisation Problems : A Machine Learning Perspective
dc.typeconference paper
dc.identifier.urnURN:NBN:fi:jyu-202305223104
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineLaskennallinen tiedefi
dc.contributor.oppiaineMultiobjective Optimization Groupfi
dc.contributor.oppiainePäätöksen teko monitavoitteisestifi
dc.contributor.oppiaineComputational Scienceen
dc.contributor.oppiaineMultiobjective Optimization Groupen
dc.contributor.oppiaineDecision analytics utilizing causal models and multiobjective optimizationen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.relation.isbn978-3-031-27249-3
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.format.pagerange260-273
dc.relation.issn0302-9743
dc.type.versionacceptedVersion
dc.rights.copyright© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
dc.rights.accesslevelopenAccessfi
dc.type.publicationconferenceObject
dc.relation.conferenceInternational Conference on Evolutionary Multi-Criterion Optimization
dc.subject.ysokoneoppiminen
dc.subject.ysobenchmarking
dc.subject.ysomonitavoiteoptimointi
dc.subject.ysoalgoritmit
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p9747
jyx.subject.urihttp://www.yso.fi/onto/yso/p32016
jyx.subject.urihttp://www.yso.fi/onto/yso/p14524
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1007/978-3-031-27250-9_19
dc.type.okmA4


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright