Quaternary Reversible Circuit Optimization for Scalable Multiplexer and Demultiplexer

Abstract
Information loss is generally related to power consumption. Therefore, reducing information loss is an interesting challenge in designing digital systems. Quaternary reversible circuits have received significant attention due to their low-power design applications and attractive advantages over binary reversible logic. Multiplexer and demultiplexer circuits are crucial parts of computing circuits in ALU, and their efficient design can significantly affect the processors’ performance. A new scalable realization of quaternary reversible 4×1 multiplexer and 1×4 demultiplexer, based on quaternary 1-qudit Shift, 2-qudit Controlled Feynman, and 2-qudit Muthukrishnan-Stroud gates, is presented in this paper. Moreover, the corresponding generalized quaternary reversible n ×1 multiplexer and 1× n demultiplexer circuits are proposed. The comparison, with respect to the current literature, shows that the proposed circuits are more efficient in terms of quantum cost, the number of garbage outputs, and the number of constant inputs.
Main Authors
Format
Articles Research article
Published
2023
Series
Subjects
Publication in research information system
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-202305112979Use this for linking
Review status
Peer reviewed
ISSN
2169-3536
DOI
https://doi.org/10.1109/access.2023.3274118
Language
English
Published in
IEEE Access
Citation
  • Taherimonfared, A., Ciriani, V., Mikkonen, T., & Haghparast, M. (2023). Quaternary Reversible Circuit Optimization for Scalable Multiplexer and Demultiplexer. IEEE Access, 11, 46592-46603. https://doi.org/10.1109/access.2023.3274118
License
CC BY 4.0Open Access
Funder(s)
Research Council of Finland
Funding program(s)
Academy Project, AoF
Akatemiahanke, SA
Research Council of Finland
Additional information about funding
This research has been supported by the Academy of Finland (Project 349945).
Copyright© Authors 2023

Share