Modulation of H-reflex and V-wave responses during dynamic balance perturbations
Nevanperä, S., Hu, N., Walker, S., Avela, J., & Piirainen, J. M. (2023). Modulation of H-reflex and V-wave responses during dynamic balance perturbations. Experimental Brain Research, 241(6), 1599-1610. https://doi.org/10.1007/s00221-023-06625-6
Julkaistu sarjassa
Experimental Brain ResearchPäivämäärä
2023Tekijänoikeudet
© The Author(s) 2023
Motoneuron excitability is possible to measure using H-reflex and V-wave responses. However, it is not known how the motor control is organized, how the H-reflex and V-wave responses modulate and how repeatable these are during dynamic balance perturbations. To assess the repeatability, 16 participants (8 men, 8 women) went through two, identical measurement sessions with ~ 48 h intervals, where maximal isometric plantar flexion (IMVC) and dynamic balance perturbations in horizontal, anterior–posterior direction were performed. Soleus muscle (SOL) neural modulation during balance perturbations were measured at 40, 70, 100 and 130 ms after ankle movement by using both H-reflex and V-wave methods. V-wave, which depicts the magnitude of efferent motoneuronal output (Bergmann et al. in JAMA 8:e77705, 2013), was significantly enhanced as early as 70 ms after the ankle movement. Both the ratio of M-wave-normalized V-wave (0.022–0.076, p < 0.001) and H-reflex (0.386–0.523, p < 0.001) increased significantly at the latency of 70 ms compared to the latency of 40 ms and remained at these levels at latter latencies. In addition, M-wave normalized V-wave/H-reflex ratio increased from 0.056 to 0.179 (p < 0.001). The repeatability of V-wave demonstrated moderate-to-substantial repeatability (ICC = 0.774–0.912) whereas the H-reflex was more variable showing fair-to-substantial repeatability (ICC = 0.581–0.855). As a conclusion, V-wave was enhanced already at 70 ms after the perturbation, which may indicate that increased activation of motoneurons occurred due to changes in descending drive. Since this is a short time-period for voluntary activity, some other, potentially subcortical responses might be involved for V-wave increment rather than voluntary drive. Our results addressed the usability and repeatability of V-wave method during dynamic conditions, which can be utilized in future studies.
...
Julkaisija
SpringerISSN Hae Julkaisufoorumista
0014-4819Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/183084239
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Liikuntatieteiden tiedekunta [3139]
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiatutkija, SALisätietoja rahoituksesta
Open Access funding provided by University of Jyväskylä (JYU). The data of this study was collected as part of the Master’s degree program in sports technology in Vuokatti. The MSc program is funded by the Municipality of Sotkamo and University of Jyväskylä. Author Simon Walker was funded by the Academy of Finland (grant #350528).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Reliability of transcranial magnetic stimulation and H-reflex measurement during balance perturbation tasks
Hu, Nijia; Avela, Janne; Kidgell, Dawson J.; Nevanperä, Samuli; Walker, Simon; Piirainen, Jarmo M. (Frontiers Media SA, 2022)Following ankle movement, posterior balance perturbation evokes short- (SLR ∼30–50 ms), medium- (MLR ∼50–60 ms), and long-latency responses (LLR ∼70–90 ms) in soleus muscle before voluntary muscle contraction. Transcranial ... -
Revising the stretch reflex threshold method to measure stretch hyperreflexia in cerebral palsy
Valadão, Pedro; Bar-On, Lynn; Cenni, Francesco; Piitulainen, Harri; Avela, Janne; Finni, Taija (Frontiers Media SA, 2022)Hyper-resistance is an increased resistance to passive muscle stretch, a common feature in neurological disorders. Stretch hyperreflexia, an exaggerated stretch reflex response, is the neural velocity-dependent component ... -
Modulations of corticospinal excitability following rapid ankle dorsiflexion in skill- and endurance-trained athletes
Hu, Nijia; Avela, Janne; Kidgell, Dawson J.; Piirainen, Jarmo M.; Walker, Simon (Springer, 2022)Purpose Long-term sports training, such as skill and endurance training, leads to specific neuroplasticity. However, it remains unclear if muscle stretch-induced proprioceptive feedback influences corticospinal ... -
Neuromuscular function and balance control in young and elderly subjects : effects of explosive strength training
Piirainen, Jarmo (University of Jyväskylä, 2014) -
Which direction should I go? : A quest for understanding the effect of TMS stimulus orientation on evoked responses
Souza, Victor; Mutanen, Tuomas; Nieminen, Jaakko; Nieminen, Aino; Sinisalo, Heikki; Parvin, Shokoofeh; Juurakko, Joona; Piitulainen, Harri; Lioumis, Pantelis; Ilmoniemi, Risto (Elsevier BV, 2023)The orientation of the electric field (E-field) induced by transcranial magnetic stimulation (TMS) plays a significant role in determining the magnitude of motor evoked potentials (MEP) and TMS-evoked potentials (TEP). ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.