Mitigation of coherent errors in the control of superconducting qubits with composite pulse sequences
Kvanttilaskennan alustana käytettävät suprajohtavat kubitit kärsivät kohinasta ja virheistä. Dekoherenssin lisäksi kvanttiporttien koherentit virheet muodostavat merkittävän virhelähteen tämänhetkisissä kvanttitietokoneissa. Usein niiden vähentämisessä turvaudutaan systeemin kontolliparametrien tarkempaan kalibraatioon, mutta NMR-sovelluksista inspiroitujen pulssisekvenssien hyödyntämistä on myös ehdotettu. Tässä työssä tutkitaan kahden sekvenssimenetelmän, SCROFULOUS:n ja BB1:n, kykyä korjata kontrollipulssin systemaattista amplitudivirhettä hyödyntäen sekä simulaatioita että IQM:n viisikubittista kvanttitietokonetta. Molempien menetelmien todetaan korjaavan amplitudivirhettä laaja-alaisesti, mutta myös keräävän enemmän virhettä operaatioiden määrän kasvaessa. Pulssisekvenssit eivät mahdollista normaalia kalibraatiota tarkempia portteja, sillä natiiviportin todetaan olevan sekvenssejä tarkempi tutkitussa systeemissä. Superconducting circuits, which are used as a platform for quantum information processing, inherently suffer from noise and errors. In addition to decoherence, coherent errors in the quantum gate operations form a substantial error source in current quantum computing processors. These errors are typically only addressed with the calibration of control parameters. Fully compensating composite pulse sequences inspired by the NMR field have been identified as a possible measure to mitigate these errors in superconducting qubits. Here, the performance of two sequences, SCROFULOUS and BB1, applicable to an arbitrary single-qubit gate, is simulated and run on a 5-qubit IQM device. Both are able to correct for pulse amplitude errors on a wide range, but perform worse in terms of the accumulation of errors during multiple gates. It is concluded that the sequences do not offer benefits over standard calibration procedures since the native gate is the most accurate in the studied system.
Keywords
Metadata
Show full item recordCollections
- Pro gradu -tutkielmat [29564]
License
Related items
Showing items with similar title or keywords.
-
Simple information-processing tasks with unbounded quantum advantage
Heinosaari, Teiko; Kerppo, Oskari; Leppäjärvi, Leevi; Plávala, Martin (American Physical Society, 2024)Communication scenarios between two parties can be implemented by first encoding messages into some states of a physical system which acts as the physical medium of the communication and then decoding the messages by ... -
Software architecture for quantum computing systems : a systematic review
Khan, Arif Ali; Ahmad, Aakash; Waseem, Muhammad; Liang, Peng; Fahmideh, Mahdi; Mikkonen, Tommi; Abrahamsson, Pekka (Elsevier BV, 2023)Quantum computing systems rely on the principles of quantum mechanics to perform a multitude of computationally challenging tasks more efficiently than their classical counterparts. The architecture of software-intensive ... -
Qubernetes : Towards a unified cloud-native execution platform for hybrid classic-quantum computing
Stirbu, Vlad; Kinanen, Otso; Haghparast, Majid; Mikkonen, Tommi (Elsevier, 2024)Context: The emergence of quantum computing proposes a revolutionary paradigm that can radically transform numerous scientific and industrial application domains. The ability of quantum computers to scale computations ... -
Toward Quaternary QCA : Novel Majority and XOR Fuzzy Gates
Akbari-Hasanjani, Reza; Sabbaghi-Nadooshan, Reza; Haghparast, Majid (Institute of Electrical and Electronics Engineers (IEEE), 2022)As an emerging nanotechnology, quantum-dot cellular automata (QCA) has been considered an alternative to CMOS technology that suffers from problems such as leakage current. Moreover, QCA is suitable for multi-valued logic ... -
Design and simulation of QCA-based 3-bit binary to gray and vice versa code converter in reversible and non-reversible mode
Safaiezadeh, Behrouz; Mahdipour, Ebrahim; Haghparast, Majid; Sayedsalehi, Samira; Hosseinzadeh, Mehdi (Elsevier, 2022)The current Very Large-Scale Integration (VLSI) technology has reached its peak due to the fundamental physical limits of Complementary Metal-Oxide-Semiconductor (CMOS). Quantum-dot Cellular Automata (QCA) is considered a ...