dc.contributor.author | Turtiainen, Hannu | |
dc.contributor.author | Costin, Andrei | |
dc.contributor.author | Hämäläinen, Timo | |
dc.contributor.author | Lahtinen, Tuomo | |
dc.contributor.author | Sintonen, Lauri | |
dc.date.accessioned | 2023-03-22T10:05:35Z | |
dc.date.available | 2023-03-22T10:05:35Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Turtiainen, H., Costin, A., Hämäläinen, T., Lahtinen, T., & Sintonen, L. (2022). CCTVCV : Computer Vision model/dataset supporting CCTV forensics and privacy applications. In <i>TrustCom 2022 : Proceedings of the IEEE 21st International Conference on Trust, Security and Privacy in Computing and Communications </i> (pp. 1219-1226). IEEE. IEEE International Conference on Trust, Security and Privacy in Computing and Communications. <a href="https://doi.org/10.1109/trustcom56396.2022.00169" target="_blank">https://doi.org/10.1109/trustcom56396.2022.00169</a> | |
dc.identifier.other | CONVID_176934009 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/86088 | |
dc.description.abstract | The increased, widespread, unwarranted, and unaccountable use of Closed-Circuit TeleVision (CCTV) cameras globally has raised concerns about privacy risks for the last several decades. Recent technological advances implemented in CCTV cameras, such as Artificial Intelligence (AI)-based facial recognition and Internet of Things (IoT) connectivity, fuel further concerns among privacy advocates. Machine learning and computer vision automated solutions may prove necessary and efficient to assist CCTV forensics of various types. In this paper, we introduce and release the first and only computer vision models are compatible with Microsoft common object in context (MS COCO) and capable of accurately detecting CCTV and video surveillance cameras in street view, generic images, and video frames. Our best detectors were built using 8,387 images, which were manually reviewed and annotated to contain 10,419 CCTV camera instances, and achieved an accuracy rate of up to 98.7%. This work proves fundamental to a handful of present and future applications that we discuss, such as CCTV forensics, pro-active detection of CCTV cameras, providing CCTV-aware routing, navigation, and geolocation services, and estimating their prevalence and density globally and on geographic boundaries. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | IEEE | |
dc.relation.ispartof | TrustCom 2022 : Proceedings of the IEEE 21st International Conference on Trust, Security and Privacy in Computing and Communications | |
dc.relation.ispartofseries | IEEE International Conference on Trust, Security and Privacy in Computing and Communications | |
dc.rights | In Copyright | |
dc.subject.other | CCTV | |
dc.subject.other | cameras | |
dc.subject.other | computer vision | |
dc.subject.other | datasets | |
dc.subject.other | machine learning | |
dc.subject.other | mapping | |
dc.subject.other | object detection | |
dc.subject.other | privacy | |
dc.subject.other | video surveillance | |
dc.title | CCTVCV : Computer Vision model/dataset supporting CCTV forensics and privacy applications | |
dc.type | conferenceObject | |
dc.identifier.urn | URN:NBN:fi:jyu-202303222237 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Secure Communications Engineering and Signal Processing | fi |
dc.contributor.oppiaine | Tekniikka | fi |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Secure Communications Engineering and Signal Processing | en |
dc.contributor.oppiaine | Engineering | en |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | |
dc.relation.isbn | 978-1-6654-9426-7 | |
dc.type.coar | http://purl.org/coar/resource_type/c_5794 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 1219-1226 | |
dc.relation.issn | 2324-898X | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2022 IEEE | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.conference | IEEE International Conference On Trust, Security And Privacy In Computing And Communications | |
dc.subject.yso | tekninen rikostutkinta | |
dc.subject.yso | tekoäly | |
dc.subject.yso | tietosuoja | |
dc.subject.yso | kasvontunnistus (tietotekniikka) | |
dc.subject.yso | yksityisyys | |
dc.subject.yso | kameravalvonta | |
dc.subject.yso | sovellukset (soveltaminen) | |
dc.subject.yso | kamerat | |
dc.subject.yso | konenäkö | |
dc.subject.yso | koneoppiminen | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p28613 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p2616 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3636 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p26695 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p10909 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p4713 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p28185 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p6350 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p2618 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21846 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1109/trustcom56396.2022.00169 | |
jyx.fundinginformation | The authors acknowledge the grants of computer capacity from the Finnish Grid and Cloud Infrastructure (persistent identifier urn:nbn:fi:research-infras-2016072533). Part of this research was supported by a grant from the Decision of the Research Dean on research funding within the Faculty (17.06.2020), Decision of the Research Dean on research funding within the Faculty (07.04.2021), and Decision of the Research Dean on research funding within the Faculty (20.04.2022) of the Faculty of Information Technology of University of Jyväskylä (The authors thank Dr. Andrei Costin for facilitating and managing the grant). Hannu Turtiainen thanks the Finnish Cultural Foundation / Suomen Kulttuurirahasto (https://skr.fi/en) for supporting his Ph.D. dissertation work and research (under grant decision no.00221059) and the Faculty of Information Technology of the University of Jyväskylä (JYU), in particular, Prof. Timo Hämäläinen, for partly supporting and supervising his Ph.D. work at JYU in 2021–2023. | |
dc.type.okm | A4 | |