Transmission Optimization and Resource Allocation for Wireless Powered Dense Vehicle Area Network With Energy Recycling

Abstract
The wireless-powered communication paradigm brings self-sustainability to the on-vehicle sensors by harvesting the energy from radiated radio frequency (RF) signals. This paper proposes a novel transmission and resource allocation strategy for the scenario where multiple wireless powered vehicle area networks (VAN) co-existed with high density. The considered multi-VAN system consists of a remote master access point (MAP), multiple on-vehicle hybrid access points (HAPs) and sensors. Unlike previous works, we consider that the sensors can recycle the radiated radio frequency energy from all the HAPs when HAPs communicate with MAP, so the dedicated signals for energy harvesting (EH) are unnecessary. The proposed strategy can achieve simultaneous wireless information and power transfer (SWIPT) without complex receiver architecture requirements. The extra EH and interference caused by the dense distribution of VANs, which are rarely explored, are fully considered. To maximize the sum throughput of all the sensors while guaranteeing the transmission from HAPs to the MAP, we jointly optimize the time allocation, system energy consumption, power allocation, and receive beamforming. Due to the non-convexity of the formulated problem, we address the sub-problems separately through the Rayleigh quotient, Frobenius norm minimization and convex optimization. Then an efficient iterative algorithm to obtain sub-optimal solutions. The simulation results and discussions illustrate the proposed scheme's effectiveness and advantages.
Main Authors
Format
Articles Research article
Published
2022
Series
Subjects
Publication in research information system
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-202302201802Use this for linking
Review status
Peer reviewed
ISSN
0018-9545
DOI
https://doi.org/10.1109/TVT.2022.3195216
Language
English
Published in
IEEE Transactions on Vehicular Technology
Citation
  • Jin, C., Hu, F., Ling, Z., Mao, Z., Chang, Z., & Li, C. (2022). Transmission Optimization and Resource Allocation for Wireless Powered Dense Vehicle Area Network With Energy Recycling. IEEE Transactions on Vehicular Technology, 71(11), 12291-12303. https://doi.org/10.1109/TVT.2022.3195216
License
In CopyrightOpen Access
Additional information about funding
Joint Fund for Regional Innovation and Development of the National Natural Science Foundation of China (Grant Number: U21A20445). National Natural Science Foundation of China (Grant Number: 61671219).
Copyright© 2022, IEEE

Share