Näytä suppeat kuvailutiedot

dc.contributor.authorZhao, Qiang
dc.contributor.authorChang, Zheng
dc.contributor.authorMin, Geyong
dc.date.accessioned2023-02-20T11:17:13Z
dc.date.available2023-02-20T11:17:13Z
dc.date.issued2022
dc.identifier.citationZhao, Q., Chang, Z., & Min, G. (2022). Anomaly Detection and Classification of Household Electricity Data : A Time Window and Multilayer Hierarchical Network Approach. <i>IEEE Internet of Things Journal</i>, <i>9</i>(5), 3704-3716. <a href="https://doi.org/10.1109/JIOT.2021.3098735" target="_blank">https://doi.org/10.1109/JIOT.2021.3098735</a>
dc.identifier.otherCONVID_99084360
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/85540
dc.description.abstractWith the increasing popularity of the smart grid, huge volumes of data are gathered from numerous sensors. How to classify, store, and analyze massive datasets to facilitate the development of the smart grid has recently attracted much attention. In particular, with the popularity of household smart meters and electricity monitoring sensors, a large amount of data can be obtained to analyze household electricity usage so as to better diagnose the leakage and theft behaviors, identify man-made tampering and data fraud, and detect powerline loss. In this paper, the time window method is first proposed to obtain the features and potential periodicity of household electricity data. Combining the denoising ability of the autoencoder and the induction ability of the feedforward neural network, a multilayer hierarchical network (MLHN) is then established to detect anomalies in single sensor data and classify multiple groups of sensor data, respectively. The experimental results show that the accuracy of detecting abnormal data and data classification is significantly improved compared with the presented scheme.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.ispartofseriesIEEE Internet of Things Journal
dc.rightsIn Copyright
dc.subject.othersähkö
dc.subject.otherdata
dc.subject.otherhousehold electricity
dc.subject.othermultilayer hierarchical network
dc.subject.otherautoencoder
dc.subject.otherfeedforward network
dc.subject.otheranomaly detection
dc.subject.otherclassification
dc.titleAnomaly Detection and Classification of Household Electricity Data : A Time Window and Multilayer Hierarchical Network Approach
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202302201799
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange3704-3716
dc.relation.issn2372-2541
dc.relation.numberinseries5
dc.relation.volume9
dc.type.versionacceptedVersion
dc.rights.copyright© 2022, IEEE
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysosähkönkulutus
dc.subject.ysopoikkeavuus
dc.subject.ysodata
dc.subject.ysoverkot (järjestelmät)
dc.subject.ysosähkö
dc.subject.ysokotitaloudet
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p15953
jyx.subject.urihttp://www.yso.fi/onto/yso/p2660
jyx.subject.urihttp://www.yso.fi/onto/yso/p27250
jyx.subject.urihttp://www.yso.fi/onto/yso/p5569
jyx.subject.urihttp://www.yso.fi/onto/yso/p5828
jyx.subject.urihttp://www.yso.fi/onto/yso/p8562
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1109/JIOT.2021.3098735
jyx.fundinginformationThis work was supported in part by NSFC under Grant 62071105.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright