Anomaly Detection and Classification of Household Electricity Data : A Time Window and Multilayer Hierarchical Network Approach
Zhao, Q., Chang, Z., & Min, G. (2022). Anomaly Detection and Classification of Household Electricity Data : A Time Window and Multilayer Hierarchical Network Approach. IEEE Internet of Things Journal, 9(5), 3704-3716. https://doi.org/10.1109/JIOT.2021.3098735
Julkaistu sarjassa
IEEE Internet of Things JournalPäivämäärä
2022Tekijänoikeudet
© 2022, IEEE
With the increasing popularity of the smart grid, huge volumes of data are gathered from numerous sensors. How to classify, store, and analyze massive datasets to facilitate the development of the smart grid has recently attracted much attention. In particular, with the popularity of household smart meters and electricity monitoring sensors, a large amount of data can be obtained to analyze household electricity usage so as to better diagnose the leakage and theft behaviors, identify man-made tampering and data fraud, and detect powerline loss. In this paper, the time window method is first proposed to obtain the features and potential periodicity of household electricity data. Combining the denoising ability of the autoencoder and the induction ability of the feedforward neural network, a multilayer hierarchical network (MLHN) is then established to detect anomalies in single sensor data and classify multiple groups of sensor data, respectively. The experimental results show that the accuracy of detecting abnormal data and data classification is significantly improved compared with the presented scheme.
...
Julkaisija
Institute of Electrical and Electronics Engineers (IEEE)ISSN Hae Julkaisufoorumista
2372-2541Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/99084360
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
This work was supported in part by NSFC under Grant 62071105.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
A method for anomaly detection in hyperspectral images, using deep convolutional autoencoders
Penttilä, Jeremias (2017)Menetelmä poikkeavuuksien havaitsemiseen hyperspektrikuvista käyttäen syviä konvolutiivisia autoenkoodereita. Poikkeavuuksien havaitseminen kuvista, erityisesti hyperspektraalisista kuvista, on hankalaa. Kun ongelmaan ... -
On data mining applications in mobile networking and network security
Zolotukhin, Mikhail (University of Jyväskylä, 2014) -
Detecting cellular network anomalies using the knowledge discovery process
Chernov, Sergey (University of Jyväskylä, 2015)Analytical companies unanimously forecast the exponential growth of mobile traffic consumption over the next five years. The densification of a network structure with small cells is regarded as a key solution to meet growing ... -
Probabilistic Transition-Based Approach for Detecting Application-Layer DDoS Attacks in Encrypted Software-Defined Networks
Ivannikova, Elena; Zolotukhin, Mikhail; Hämäläinen, Timo (Springer, 2017)With the emergence of cloud computing, many attacks, including Distributed Denial-of-Service (DDoS) attacks, have changed their direction towards cloud environment. In particular, DDoS attacks have changed in scale, methods, ... -
Applications of images anomalies detection using deep learning in department store
Banstola, Ram (2020)Deep learning is a branch of machine learning which itself is a branch of Artificial Intelligence. The use of deep learning to solve domain specific problems is on the rise. Deep learning has been successfully used to ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.