Relativistinen Navier–Stokes-teoria
Abstract
Tässä tutkielmassa tutustun hydrodynaamiseen malliin relativistisen viskoosin fluidin
kuvaamisessa ja selvitän minkälaiseen fysiikkaan teoria pohjautuu. Suurin käyttökohde relativistiselle hydrodynamiikalle on raskasionitörmäyksissä muodostuvan
kvarkki-gluoniplasman tutkiminen. Varhaisen maailmankaikkeuden ja mahdollisesti
neutronitähtien ytimien uskotaan koostuvan kvarkki-gluoniplasmasta. Matemaattisessa tarkastelussa rakennan ensin ideaalisen relativistisen hydrodynamiikan yhtälöt
perustavanlaatuisten modernin fysiikan- sekä termodynamiikan teorioiden pohjalta ja näytän, että ideaalitapauksessa entropia säilyy. Seuraavaksi tarkastelen viskositeetin aiheuttamia fluidin hiukkas- ja energiadiffuusion vaikutuksia. Lopuksi
johdan ideaalisen hydrodynamiikan pohjalta relativistisen Navier–Stokes-teorian
liikeyhtälöt määrittelemällä nelinopeuden uudestaan ja vaatimalla entropian kasvun.
Relativistiset Navier–Stokes-liikeyhtälöt kuvaavat relativistisen fluidin aikakehitystä,
jossa termodynaamisten muuttujien gradientit aiheuttavat sekoitusvirtoja fluidin
viskositeetin takia. Viskositeetin pienentyessä yhtälöt redusoituvat kohti ideaalisen
hydrodynamiikan yhtälöitä.
In this thesis I review a hydrodynamic theory for modeling a relativistic viscous fluid. The main application for relativistic hydrodynamics is studying quark-gluon plasma created in heavy ion collisions. The early universe and possibly the cores of neutron stars are believed to consist of quark-gluon plasma. In the mathematical derivation I first construct the equations for ideal relativistic hydrodynamics using fundamental theories of modern physics and thermodynamics, and show that in the case of ideal fluid, entropy is conserved. Then I consider the effect of particle and energy diffusion induced by fluid viscosity. Finally, by re-defining the four-velocity and stipulating the growth of entropy, I derive the equations of motion of relativistic Navier–Stokes theory from the basis of the ideal hydrodynamics. The relativistic Navier–Stokes equations of motion describe the relativistic fluid’s time development, where the gradients of the thermodynamic variables produce dissipative currents. As the viscosity decreases, the equations reduce towards the equations of ideal hydrodynamics.
In this thesis I review a hydrodynamic theory for modeling a relativistic viscous fluid. The main application for relativistic hydrodynamics is studying quark-gluon plasma created in heavy ion collisions. The early universe and possibly the cores of neutron stars are believed to consist of quark-gluon plasma. In the mathematical derivation I first construct the equations for ideal relativistic hydrodynamics using fundamental theories of modern physics and thermodynamics, and show that in the case of ideal fluid, entropy is conserved. Then I consider the effect of particle and energy diffusion induced by fluid viscosity. Finally, by re-defining the four-velocity and stipulating the growth of entropy, I derive the equations of motion of relativistic Navier–Stokes theory from the basis of the ideal hydrodynamics. The relativistic Navier–Stokes equations of motion describe the relativistic fluid’s time development, where the gradients of the thermodynamic variables produce dissipative currents. As the viscosity decreases, the equations reduce towards the equations of ideal hydrodynamics.
Main Author
Format
Theses
Bachelor thesis
Published
2022
Subjects
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-202302171777Use this for linking
Language
Finnish