Näytä suppeat kuvailutiedot

dc.contributor.authorParkkonen, Jouni
dc.contributor.authorPaulin, Frédéric
dc.date.accessioned2023-02-02T13:03:23Z
dc.date.available2023-02-02T13:03:23Z
dc.date.issued2021
dc.identifier.citationParkkonen, J., & Paulin, F. (2021). Integral binary Hamiltonian forms and their waterworlds. <i>Conformal Geometry and Dynamics</i>, <i>25</i>(7), 126-169. <a href="https://doi.org/10.1090/ecgd/362" target="_blank">https://doi.org/10.1090/ecgd/362</a>
dc.identifier.otherCONVID_104570161
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/85324
dc.description.abstractWe give a graphical theory of integral indefinite binary Hamiltonian forms f analogous to the one by Conway for binary quadratic forms and the one of Bestvina-Savin for binary Hermitian forms. Given a maximal order O in a definite quaternion algebra over Q, we define the waterworld of f, analogous to Conway's river and Bestvina-Savin's ocean, and use it to give a combinatorial description of the values of f on O×O. We use an appropriate normalisation of Busemann distances to the cusps (with an algebraic description given in an independent appendix), and the SL2(O)-equivariant Ford-Voronoi cellulation of the real hyperbolic 5-space.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Mathematical Society (AMS)
dc.relation.ispartofseriesConformal Geometry and Dynamics
dc.rightsIn Copyright
dc.subject.otherbinary Hamiltonian form
dc.subject.otherrational quaternion algebra
dc.subject.othermaximal order
dc.subject.otherHamilton-Bianchi group
dc.subject.otherreduction theory
dc.subject.otherwaterworld
dc.subject.otherhyperbolic 5-space
dc.titleIntegral binary Hamiltonian forms and their waterworlds
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202302021606
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineAnalyysin ja dynamiikan tutkimuksen huippuyksikköfi
dc.contributor.oppiaineMathematicsen
dc.contributor.oppiaineAnalysis and Dynamics Research (Centre of Excellence)en
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange126-169
dc.relation.issn1088-4173
dc.relation.numberinseries7
dc.relation.volume25
dc.type.versionacceptedVersion
dc.rights.copyright© Authors 2021
dc.rights.accesslevelopenAccessfi
dc.subject.ysodifferentiaaligeometria
dc.subject.ysoryhmäteoria
dc.subject.ysolukuteoria
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p16682
jyx.subject.urihttp://www.yso.fi/onto/yso/p12497
jyx.subject.urihttp://www.yso.fi/onto/yso/p1988
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1090/ecgd/362
jyx.fundinginformationThis work was supported by the French-Finnish CNRS grant PICS No. 6950. The second author greatly acknowledges the financial support of Warwick University for a one month stay, decisive for the writing of this paper.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright