dc.contributor.author | Parkkonen, Jouni | |
dc.contributor.author | Paulin, Frédéric | |
dc.date.accessioned | 2023-02-02T13:03:23Z | |
dc.date.available | 2023-02-02T13:03:23Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Parkkonen, J., & Paulin, F. (2021). Integral binary Hamiltonian forms and their waterworlds. <i>Conformal Geometry and Dynamics</i>, <i>25</i>(7), 126-169. <a href="https://doi.org/10.1090/ecgd/362" target="_blank">https://doi.org/10.1090/ecgd/362</a> | |
dc.identifier.other | CONVID_104570161 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/85324 | |
dc.description.abstract | We give a graphical theory of integral indefinite binary Hamiltonian forms f analogous to the one by Conway for binary quadratic forms and the one of Bestvina-Savin for binary Hermitian forms. Given a maximal order O in a definite quaternion algebra over Q, we define the waterworld of f, analogous to Conway's river and Bestvina-Savin's ocean, and use it to give a combinatorial description of the values of f on O×O. We use an appropriate normalisation of Busemann distances to the cusps (with an algebraic description given in an independent appendix), and the SL2(O)-equivariant Ford-Voronoi cellulation of the real hyperbolic 5-space. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | American Mathematical Society (AMS) | |
dc.relation.ispartofseries | Conformal Geometry and Dynamics | |
dc.rights | In Copyright | |
dc.subject.other | binary Hamiltonian form | |
dc.subject.other | rational quaternion algebra | |
dc.subject.other | maximal order | |
dc.subject.other | Hamilton-Bianchi group | |
dc.subject.other | reduction theory | |
dc.subject.other | waterworld | |
dc.subject.other | hyperbolic 5-space | |
dc.title | Integral binary Hamiltonian forms and their waterworlds | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202302021606 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Analyysin ja dynamiikan tutkimuksen huippuyksikkö | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.contributor.oppiaine | Analysis and Dynamics Research (Centre of Excellence) | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 126-169 | |
dc.relation.issn | 1088-4173 | |
dc.relation.numberinseries | 7 | |
dc.relation.volume | 25 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © Authors 2021 | |
dc.rights.accesslevel | openAccess | fi |
dc.subject.yso | differentiaaligeometria | |
dc.subject.yso | ryhmäteoria | |
dc.subject.yso | lukuteoria | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p16682 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p12497 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p1988 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1090/ecgd/362 | |
jyx.fundinginformation | This work was supported by the French-Finnish CNRS grant PICS No. 6950. The second author greatly acknowledges the financial support of Warwick University for a one month stay, decisive for the writing of this paper. | |
dc.type.okm | A1 | |