Näytä suppeat kuvailutiedot

dc.contributor.authorWang, Xiaoshuang
dc.contributor.authorZhang, Chi
dc.contributor.authorKärkkäinen, Tommi
dc.contributor.authorChang, Zheng
dc.contributor.authorCong, Fengyu
dc.date.accessioned2023-02-02T12:29:19Z
dc.date.available2023-02-02T12:29:19Z
dc.date.issued2023
dc.identifier.citationWang, X., Zhang, C., Kärkkäinen, T., Chang, Z., & Cong, F. (2023). Channel Increment Strategy-Based 1D Convolutional Neural Networks for Seizure Prediction Using Intracranial EEG. <i>IEEE Transactions on Neural Systems and Rehabilitation Engineering</i>, <i>31</i>, 316-325. <a href="https://doi.org/10.1109/TNSRE.2022.3222095" target="_blank">https://doi.org/10.1109/TNSRE.2022.3222095</a>
dc.identifier.otherCONVID_160172752
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/85316
dc.description.abstractThe application of intracranial electroencephalogram (iEEG) to predict seizures remains challenging. Although channel selection has been utilized in seizure prediction and detection studies, most of them focus on the combination with conventional machine learning methods. Thus, channel selection combined with deep learning methods can be further analyzed in the field of seizure prediction. Given this, in this work, a novel iEEG-based deep learning method of One-Dimensional Convolutional Neural Networks (1D-CNN) combined with channel increment strategy was proposed for the effective seizure prediction. First, we used 4-sec sliding windows without overlap to segment iEEG signals. Then, 4-sec iEEG segments with an increasing number of channels (channel increment strategy, from one channel to all channels) were sequentially fed into the constructed 1D-CNN model. Next, the patient-specific model was trained for classification. Finally, according to the classification results in different channel cases, the channel case with the best classification rate was selected for each patient. Our method was tested on the Freiburg iEEG database, and the system performances were evaluated at two levels (segment- and event-based levels). Two model training strategies (Strategy-1 and Strategy-2) based on the K-fold cross validation (K-CV) were discussed in our work. (1) For the Strategy-1, a basic K-CV, a sensitivity of 90.18%, specificity of 94.81%, and accuracy of 94.42% were achieved at the segment-based level. At the event-based level, an event-based sensitivity of 100%, and false prediction rate (FPR) of 0.12/h were attained. (2) For the Strategy-2, the difference from the Strategy-1 is that a trained model selection step is added during model training. We obtained a sensitivity, specificity, and accuracy of 86.23%, 96.00% and 95.13% respectively at the segment-based level. At the event-based level, we achieved an event-based sensitivity of 98.65% with 0.08/h FPR. Our method also showed a better performance in seizure prediction compared to many previous studies and the random predictor using the same database. This may have reference value for the future clinical application of seizure prediction.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.ispartofseriesIEEE Transactions on Neural Systems and Rehabilitation Engineering
dc.rightsCC BY 4.0
dc.titleChannel Increment Strategy-Based 1D Convolutional Neural Networks for Seizure Prediction Using Intracranial EEG
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202302021598
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTekniikkafi
dc.contributor.oppiaineHuman and Machine based Intelligence in Learningfi
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineSecure Communications Engineering and Signal Processingfi
dc.contributor.oppiaineEngineeringen
dc.contributor.oppiaineHuman and Machine based Intelligence in Learningen
dc.contributor.oppiaineMathematical Information Technologyen
dc.contributor.oppiaineSecure Communications Engineering and Signal Processingen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange316-325
dc.relation.issn1534-4320
dc.relation.volume31
dc.type.versionpublishedVersion
dc.rights.copyright© Authors, 2023
dc.rights.accesslevelopenAccessfi
dc.subject.ysoEEG
dc.subject.ysoepilepsia
dc.subject.ysoneuroverkot
dc.subject.ysoennusteet
dc.subject.ysosignaalianalyysi
dc.subject.ysosyväoppiminen
dc.subject.ysokoneoppiminen
dc.subject.ysosignaalinkäsittely
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p3328
jyx.subject.urihttp://www.yso.fi/onto/yso/p9413
jyx.subject.urihttp://www.yso.fi/onto/yso/p7292
jyx.subject.urihttp://www.yso.fi/onto/yso/p3297
jyx.subject.urihttp://www.yso.fi/onto/yso/p26805
jyx.subject.urihttp://www.yso.fi/onto/yso/p39324
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p12266
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1109/TNSRE.2022.3222095
jyx.fundinginformationThis work was supported by the National Natural Science Foundation of China (Grant No. 91748105), the National Foundation in China (No. JCKY2019110B009 & 2020-JCJQ-JJ-252), the scholarship from China Scholarship Council (No. 201806060166), the Science and Technology Planning Project of Liaoning Province (No. 2021JH1/10400049), and the Fundamental Research Funds for the Central Universities [DUT20LAB303 & DUT20LAB308] in Dalian University of Technology, China.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0