Show simple item record

dc.contributor.authorKanerva, Heini
dc.contributor.authorHonkavaara, Eija
dc.contributor.authorNäsi, Roope
dc.contributor.authorHakala, Teemu
dc.contributor.authorJunttila, Samuli
dc.contributor.authorKarila, Kirsi
dc.contributor.authorKoivumäki, Niko
dc.contributor.authorAlves Oliveira, Raquel
dc.contributor.authorPelto-Arvo, Mikko
dc.contributor.authorPölönen, Ilkka
dc.contributor.authorTuviala, Johanna
dc.contributor.authorÖstersund, Madeleine
dc.contributor.authorLyytikäinen-Saarenmaa, Päivi
dc.date.accessioned2023-02-02T12:19:51Z
dc.date.available2023-02-02T12:19:51Z
dc.date.issued2022
dc.identifier.citationKanerva, H., Honkavaara, E., Näsi, R., Hakala, T., Junttila, S., Karila, K., Koivumäki, N., Alves Oliveira, R., Pelto-Arvo, M., Pölönen, I., Tuviala, J., Östersund, M., & Lyytikäinen-Saarenmaa, P. (2022). Estimating Tree Health Decline Caused by Ips typographus L. from UAS RGB Images Using a Deep One-Stage Object Detection Neural Network. <i>Remote Sensing</i>, <i>14</i>(24), Article 6257. <a href="https://doi.org/10.3390/rs14246257" target="_blank">https://doi.org/10.3390/rs14246257</a>
dc.identifier.otherCONVID_176476227
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/85315
dc.description.abstractVarious biotic and abiotic stresses are causing decline in forest health globally. Presently, one of the major biotic stress agents in Europe is the European spruce bark beetle (Ips typographus L.) which is increasingly causing widespread tree mortality in northern latitudes as a consequence of the warming climate. Remote sensing using unoccupied aerial systems (UAS) together with evolving machine learning techniques provide a powerful tool for fast-response monitoring of forest health. The aim of this study was to investigate the performance of a deep one-stage object detection neural network in the detection of damage by I. typographus in Norway spruce trees using UAS RGB images. A Scaled-YOLOv4 (You Only Look Once) network was implemented and trained for tree health analysis. Datasets for model training were collected during 2013–2020 from three different areas, using four different RGB cameras, and under varying weather conditions. Different model training options were evaluated, including two different symptom rules, different partitions of the dataset, fine-tuning, and hyperparameter optimization. Our study showed that the network was able to detect and classify spruce trees that had visually separable crown symptoms, but it failed to separate spruce trees with stem symptoms and a green crown from healthy spruce trees. For the best model, the overall F-score was 89%, and the F-scores for the healthy, infested, and dead trees were 90%, 79%, and 98%, respectively. The method adapted well to the diverse dataset, and the processing results with different options were consistent. The results indicated that the proposed method could enable implementation of low-cost tools for management of I. typographus outbreaks.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherMDPI
dc.relation.ispartofseriesRemote Sensing
dc.rightsCC BY 4.0
dc.subject.otherbark beetle
dc.subject.otherdeep learning
dc.subject.otherdrone
dc.subject.otherobject detection
dc.subject.otherremote sensing
dc.subject.othertree health
dc.titleEstimating Tree Health Decline Caused by Ips typographus L. from UAS RGB Images Using a Deep One-Stage Object Detection Neural Network
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202302021597
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineLaskennallinen tiedefi
dc.contributor.oppiaineComputing, Information Technology and Mathematicsfi
dc.contributor.oppiaineMathematical Information Technologyen
dc.contributor.oppiaineComputational Scienceen
dc.contributor.oppiaineComputing, Information Technology and Mathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2072-4292
dc.relation.numberinseries24
dc.relation.volume14
dc.type.versionpublishedVersion
dc.rights.copyright© 2022 by the authors. Licensee MDPI, Basel, Switzerland
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber327862
dc.subject.ysokirjanpainaja (kaarnakuoriaiset)
dc.subject.ysomiehittämättömät ilma-alukset
dc.subject.ysometsät
dc.subject.ysohyönteistuhot
dc.subject.ysokaukokartoitus
dc.subject.ysomonitorointi
dc.subject.ysometsätuhot
dc.subject.ysosyväoppiminen
dc.subject.ysokoneoppiminen
dc.subject.ysoneuroverkot
dc.subject.ysometsäkuusi
dc.subject.ysoestimointi
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p19853
jyx.subject.urihttp://www.yso.fi/onto/yso/p24149
jyx.subject.urihttp://www.yso.fi/onto/yso/p5454
jyx.subject.urihttp://www.yso.fi/onto/yso/p14444
jyx.subject.urihttp://www.yso.fi/onto/yso/p2521
jyx.subject.urihttp://www.yso.fi/onto/yso/p3628
jyx.subject.urihttp://www.yso.fi/onto/yso/p11854
jyx.subject.urihttp://www.yso.fi/onto/yso/p39324
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p7292
jyx.subject.urihttp://www.yso.fi/onto/yso/p5552
jyx.subject.urihttp://www.yso.fi/onto/yso/p11349
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.3390/rs14246257
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationThis research was funded by the Academy of Finland under grants 327861, 327862 and 330422, by the Ministry of Agriculture and Forestry of Finland with the projects MONITUHO (no. 647/03.02.06.00/2018), SPRUCERISK (no. VN/5292/2021) and MMM_UNITE (no. VN/3482/2021) and by Maj and Tor Nessling Foundation with IPSCAR project (no. 2014462). This study has been performed with affiliation to the Academy of Finland Flagship Forest–Human–Machine Interplay—Building Resilience, Redefining Value Networks and Enabling Meaningful Experiences (UNITE) (decision no. 337127).
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0