Show simple item record

dc.contributor.authorChopin, Nicolas
dc.contributor.authorSingh, Sumeetpal S.
dc.contributor.authorSoto, Tomás
dc.contributor.authorVihola, Matti
dc.date.accessioned2023-02-02T09:46:21Z
dc.date.available2023-02-02T09:46:21Z
dc.date.issued2022
dc.identifier.citationChopin, N., Singh, S. S., Soto, T., & Vihola, M. (2022). On resampling schemes for particle filters with weakly informative observations. <i>Annals of Statistics</i>, <i>50</i>(6), 3197-3222. <a href="https://doi.org/10.1214/22-aos2222" target="_blank">https://doi.org/10.1214/22-aos2222</a>
dc.identifier.otherCONVID_164639007
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/85299
dc.description.abstractWe consider particle filters with weakly informative observations (or ‘potentials’) relative to the latent state dynamics. The particular focus of this work is on particle filters to approximate time-discretisations of continuous-time Feynman–Kac path integral models—a scenario that naturally arises when addressing filtering and smoothing problems in continuous time—but our findings are indicative about weakly informative settings beyond this context too. We study the performance of different resampling schemes, such as systematic resampling, SSP (Srinivasan sampling process) and stratified resampling, as the time-discretisation becomes finer and also identify their continuous-time limit, which is expressed as a suitably defined ‘infinitesimal generator.’ By contrasting these generators, we find that (certain modifications of) systematic and SSP resampling ‘dominate’ stratified and independent ‘killing’ resampling in terms of their limiting overall resampling rate. The reduced intensity of resampling manifests itself in lower variance in our numerical experiment. This efficiency result, through an ordering of the resampling rate, is new to the literature. The second major contribution of this work concerns the analysis of the limiting behaviour of the entire population of particles of the particle filter as the time discretisation becomes finer. We provide the first proof, under general conditions, that the particle approximation of the discretised continuous-time Feynman–Kac path integral models converges to a (uniformly weighted) continuous-time particle system.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherInstitute of Mathematical Statistics
dc.relation.ispartofseriesAnnals of Statistics
dc.rightsIn Copyright
dc.subject.otherFeynman–Kac model
dc.subject.otherHidden Markov model
dc.subject.otherparticle filter
dc.subject.otherpath integral
dc.subject.otherresampling
dc.titleOn resampling schemes for particle filters with weakly informative observations
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202302021581
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineTilastotiedefi
dc.contributor.oppiaineStatisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange3197-3222
dc.relation.issn0090-5364
dc.relation.numberinseries6
dc.relation.volume50
dc.type.versionacceptedVersion
dc.rights.copyright© 2022 Institute of Mathematical Statistics
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber315619
dc.subject.ysootanta
dc.subject.ysonumeerinen analyysi
dc.subject.ysostokastiset prosessit
dc.subject.ysotilastolliset mallit
dc.subject.ysoMarkovin ketjut
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p12939
jyx.subject.urihttp://www.yso.fi/onto/yso/p15833
jyx.subject.urihttp://www.yso.fi/onto/yso/p11400
jyx.subject.urihttp://www.yso.fi/onto/yso/p26278
jyx.subject.urihttp://www.yso.fi/onto/yso/p13075
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1214/22-aos2222
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationTS and MV were supported by Academy of Finland grant 315619 and the Finnish Centre of Excellence in Randomness and Structures.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright