Näytä suppeat kuvailutiedot

dc.contributor.authorManninen, Juuso
dc.contributor.authorLaitinen, Antti
dc.contributor.authorMassel, Francesco
dc.contributor.authorHakonen, Pertti
dc.date.accessioned2023-01-03T07:51:40Z
dc.date.available2023-01-03T07:51:40Z
dc.date.issued2022
dc.identifier.citationManninen, J., Laitinen, A., Massel, F., & Hakonen, P. (2022). Mechanical Detection of the De Haas–van Alphen Effect in Graphene. <i>Nano Letters</i>, <i>22</i>(24), 9869-9875. <a href="https://doi.org/10.1021/acs.nanolett.2c02655" target="_blank">https://doi.org/10.1021/acs.nanolett.2c02655</a>
dc.identifier.otherCONVID_164632142
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/84687
dc.description.abstractIn our work, we study the dynamics of a graphene Corbino disk supported by a gold mechanical resonator in the presence of a magnetic field. We demonstrate here that our graphene/gold mechanical structure exhibits a nontrivial resonance frequency dependence on the applied magnetic field, showing how this feature is indicative of the de Haas–van Alphen effect in the graphene Corbino disk. Relying on the mechanical resonances of the Au structure, our detection scheme is essentially independent of the material considered and can be applied for dHvA measurements on any conducting 2D material. In particular, the scheme is expected to be an important tool in studies of centrosymmetric transition metal dichalcogenide (TMD) crystals, shedding new light on hidden magnetization and interaction effects.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Chemical Society (ACS)
dc.relation.ispartofseriesNano Letters
dc.rightsCC BY 4.0
dc.subject.othergraphene
dc.subject.otherde Haas−van Alphen effect
dc.subject.otherCorbino geometry
dc.subject.othernanomechanics
dc.titleMechanical Detection of the De Haas–van Alphen Effect in Graphene
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202301031045
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange9869-9875
dc.relation.issn1530-6984
dc.relation.numberinseries24
dc.relation.volume22
dc.type.versionpublishedVersion
dc.rights.copyright© 2022 The Authors. Published by American Chemical Society
dc.rights.accesslevelopenAccessfi
dc.subject.ysografeeni
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p24483
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1021/acs.nanolett.2c02655
jyx.fundinginformationThis work was supported by the Academy of Finland projects 314448 (BOLOSE) and 336813 (CoE, Quantum Technology Finland) as well as by ERC (grant no. 670743). The research leading to these results has received funding from the European Unions Horizon 2020 Research and Innovation Programme, under Grant Agreement no 824109, and the experimental work benefited from the Aalto University OtaNano/LTL infrastructure. A.L. is grateful to Osk. Huttunen foundation for a scholarship. J.M. thanks the Väisälä Foundation of the Finnish Academy of Science and Letters for support. F.M. acknowledges financial support from the Research Council of Norway (Grant No. 333937) through participation in the QuantERA ERA-NET Cofund in Quantum Technologies (project MQSens) implemented within the European Unions Horizon 2020 Programme.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0