Synthesis and Structure Elucidation of Novel Spirooxindole Linked to Ferrocene and Triazole Systems via [3 + 2] Cycloaddition Reaction
Abstract
In the present work, a novel heterocyclic hybrid of a spirooxindole system was synthesized via the attachment of ferrocene and triazole motifs into an azomethine ylide by [3 + 2] cycloaddition reaction protocol. The X-ray structure of the heterocyclic hybrid (1″R,2″S,3R)-2″-(1-(3-chloro-4-fluorophenyl)-5-methyl-1H-1,2,3-triazole-4-carbonyl)-5-methyl-1″-(ferrocin-2-yl)-1″,2″,5″,6″,7″,7a″-hexahydrospiro[indoline-3,3″-pyrrolizin]-2-one revealed very well the expected structure, by using different analytical tools (FTIR and NMR spectroscopy). It crystallized in the triclinic-crystal system and the P-1-space group. The unit cell parameters are a = 9.1442(2) Å, b = 12.0872(3) Å, c = 14.1223(4) Å, α = 102.1700(10)°, β = 97.4190(10)°, γ = 99.1600(10)°, and V = 1484.81(7) Å3. There are two molecules per unit cell and one formula unit per asymmetric unit. Hirshfeld analysis was used to study the molecular packing of the heterocyclic hybrid. H···H (50.8%), H···C (14.2%), Cl···H (8.9%), O···H (7.3%), and N···H (5.1%) are the most dominant intermolecular contacts in the crystal structure. O···H, N···H, H···C, F···H, F···C, and O···O are the only contacts that have the characteristic features of short and significant interactions. AIM study indicated predominant covalent characters for the Fe–C interactions. Also, the electron density (ρ(r)) at the bond critical point correlated inversely with the Fe–C distances.
Main Authors
Format
Articles
Research article
Published
2022
Series
Subjects
Publication in research information system
Publisher
MDPI AG
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-202212205763Use this for linking
Review status
Peer reviewed
ISSN
1420-3049
DOI
https://doi.org/10.3390/molecules27134095
Language
English
Published in
Molecules
Citation
- Altowyan, M. S., Soliman, S. M., Haukka, M., Al-Shaalan, N. H., Alkharboush, A. A., & Barakat, A. (2022). Synthesis and Structure Elucidation of Novel Spirooxindole Linked to Ferrocene and Triazole Systems via [3 + 2] Cycloaddition Reaction. Molecules, 27(13), Article 4095. https://doi.org/10.3390/molecules27134095
Additional information about funding
This work was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University, through the Research Groups Program Grant no. (RGP-1443-0040)
Copyright© 2022 by the authors. Licensee MDPI, Basel, Switzerland.